Abstract
This paper describes a simple novel compound random field model capable of realistic modelling the most advanced recent representation of visual properties of surface materials—the bidirectional texture function. The presented compound random field model combines a non-parametric control random field with local multispectral models for single regions and thus allows to avoid demanding iterative methods for both parameters estimation and the compound random field synthesis. The local texture regions (not necessarily continuous) are represented by an analytical bidirectional texture function model which consists of single scale factors modeled by the three-dimensional moving average random field model which can be analytically estimated as well as synthesized.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Asmussen, J.C.: Modal analysis based on the random decrement technique: application to civil engineering structures. Ph.D. thesis, University of Aalborg (1997)
Cole Jr, H.A.: On-line failure detection and damping measurement of aerospace structures by random decrement signatures. Technical Report TMX-62.041, NASA (1973)
Figueiredo, M., Leitao, J.: Unsupervised image restoration and edge location using compound Gauss–Markov random fields and the mdl principle. IEEE Trans. Image Process. 6(8), 1089–1102 (1997)
Filip, J., Haindl, M.: Bidirectional texture function modeling: a state of the art survey. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 1921–1940 (2009)
Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions and bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(11), 721–741 (1984)
Haindl, M., Hatka, M.: BTF Roller. In: Chantler, M., Drbohlav, O. (eds.) Texture 2005. Proceedings of the 4th International Workshop on Texture Analysis. pp. 89–94. IEEE, Los Alamitos (2005)
Haindl, M., Hatka, M.: A roller—fast sampling-based texture synthesis algorithm. In: Skala, V. (ed.) Proceedings of the 13th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pp. 93–96. UNION Agency—Science Press, Plzen (2005)
Haindl, M., Havlíček, V.: A multiscale colour texture model. In: Kasturi, R., Laurendeau, D., Suen, C. (eds.) Proceedings of the 16th International Conference on Pattern Recognition. pp. 255–258. IEEE Computer Society, Los Alamitos (2002). http://dx.doi.org/10.1109/ICPR.2002.1044676
Haindl, M., Havlíček, V.: A compound MRF texture model. In: Proceedings of the 20th International Conference on Pattern Recognition, ICPR 2010. pp. 1792–1795. IEEE Computer Society CPS, Los Alamitos (2010). http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.442
Haindl, M., Kudělka, M.: Texture fidelity benchmark. In: 2014 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), pp. 1–5. IEEE Computer Society CPS, Los Alamitos (2014)
Haindl, M., Remeš, V., Havlíček, V.: Potts compound markovian texture model. In: Proceedings of the 21st International Conference on Pattern Recognition. ICPR 2012, pp. 29–32. IEEE Computer Society CPS, Los Alamitos (2012)
Haindl, M., Filip, J.: Extreme compression and modeling of bidirectional texture function. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1859–1865 (2007). http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.1139
Haindl, M., Filip, J.: Visual texture. Advances in Computer Vision and Pattern Recognition. Springer, London (2013)
Haindl, M., Havlíček, M.: Bidirectional texture function simultaneous autoregressive model. In: Salerno, E., Etin, A., Salvetti, O. (eds.) Computational Intelligence for Multimedia Understanding, Lecture Notes in Computer Science, vol. 7252, pp. 149–159. Springer, Berlin (2012). doi:10.1007/978-3-642-32436-9_13. http://www.springerlink.com/content/hj32551334g61647/
Haindl, M., Havlíček, V.: A multiresolution causal colour texture model. Lect. Notes Comput. Sci. 1876, 114–122 (2000)
Haindl, M., Havlíček, V.: A plausible texture enlargement and editing compound markovian model. In: Salerno, E., Cetin, A., Salvetti, O. (eds.) Computational Intelligence for Multimedia Understanding, Lecture Notes in Computer Science, vol. 7252, pp. 138–148. Springer, Berlin (2012). doi:10.1007/978-3-642-32436-9_12. http://www.springerlink.com/content/047124j43073m202/
Haindl, M., Remeš, V., Havlíček, V.: Btf potts compound texture model, vol. 9398, pp. 939807-1–939807-11. SPIE, Bellingham, WA 98227-0010, USA (2015). http://dx.doi.org/10.1117/12.2077481
Havlíček, M., Haindl, M.: A moving average bidirectional texture function model. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) Computer Analysis of Images and Patterns. Lecture Notes in Computer Science, vol. 8048, pp. 338–345. Springer (2013)
Jeng, F.C., Woods, J.W.: Compound Gauss-Markov random fields for image estimation. IEEE Trans. Signal Process. 39(3), 683–697 (1991)
Li, X., Cadzow, J., Wilkes, D., Peters, R., II Bodruzzaman, M.: An efficient two dimensional moving average model for texture analysis and synthesis. In: Proceedings IEEE Southeastcon ’92, vol. 1, pp. 392–395. IEEE (1992)
Molina, R., Mateos, J., Katsaggelos, A., Vega, M.: Bayesian multichannel image restoration using compound Gauss-Markov random fields. IEEE Trans. Image Proc. 12(12), 1642–1654 (2003)
Potts, R., Domb, C.: Some generalized order-disorder transformations. Proc. Cambr. Philos. Soc. 48, 106–109 (1952)
Wu, F.: The Potts model. Rev. Modern Phys. 54(1), 235–268 (1982)
Wu, J., Chung, A.C.S.: A segmentation model using compound markov random fields based on a boundary model. IEEE Trans. Image Process. 16(1), 241–252 (2007)
Acknowledgments
This research was supported by the Czech Science Foundation project GAČR 14-10911S.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing Switzerland
About this paper
Cite this paper
Haindl, M., Havlíček, M. (2017). A Compound Moving Average Bidirectional Texture Function Model. In: Zgrzywa, A., Choroś, K., Siemiński, A. (eds) Multimedia and Network Information Systems. Advances in Intelligent Systems and Computing, vol 506. Springer, Cham. https://doi.org/10.1007/978-3-319-43982-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-43982-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-43981-5
Online ISBN: 978-3-319-43982-2
eBook Packages: EngineeringEngineering (R0)