Abstract
Similarity searching has become widely available in many on-line archives of multimedia content. Querying such systems starts with either a query object provided by user or a random object provided by the system, and proceeds in more iterations to improve user’s satisfaction with query results. This leads to processing many very similar queries by the system. In this paper, we analyze performance of two representatives of metric indexing structures and propose a novel concept of reordering search queue that optimizes access to data partitions for repetitive queries. This concept is verified in numerous experiments on real-life image dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amato, G., Rabitti, F., Savino, P., Zezula, P.: Region proximity in metric spaces and its use for approximate similarity search. ACM Trans. Inf. Syst. (TOIS) 21(2), 192–227 (2003)
Barrios, J.M., Bustos, B., Skopal, T.: Analyzing and dynamically indexing the query set. Inf. Syst. 45, 37–47 (2014)
Batko, M., Falchi, F., Lucchese, C., Novak, D., Perego, R., Rabitti, F., Sedmidubsky, J., Zezula, P.: Building a web-scale image similarity search system. Multimedia Tools Appl. 47(3), 599–629 (2009)
Beecks, C., Uysal, M.S., Driessen, P., Seidl, T.: Content-based exploration of multimedia databases. In: Proceedings of the 11th International Workshop on Content-Based Multimedia Indexing (CBMI), pp. 59–64. IEEE, June 2013
Beecks, C., Skopal, T., Schöffmann, K., Seidl, T.: Towards large-scale multimedia exploration. In: Proceedings of the 5th International Workshop on Ranking in Databases (DBRank), Seattle, WA, USA, pp. 31–33. VLDB Endowment (2011)
Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: index structures for improving the performance of multimedia databases. ACM Comput. Surv. 33(3), 322–373 (2001)
Chávez, E., Marroquín, J.L., Navarro, G.: Overcoming the curse of dimensionality. In: Proceedings of the European Workshop on Content-Based Multimedia Indexing (CBMI), Toulouse, France, 25–27 October 1999, pp. 57–64 (1999)
Chávez, E., Navarro, G., Baeza-Yates, R.A., Marroquín, J.L.: Searching in metric spaces. ACM Comput. Surv. (CSUR) 33(3), 273–321 (2001)
Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity search in metric spaces. In: Jarke, M., Carey, M.J., Dittrich, K.R., Lochovsky, F.H., Loucopoulos, P., Jeusfeld, M.A. (eds.) Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB), Athens, Greece, 25–29 August 1997, pp. 426–435. Morgan Kaufmann (1997)
Deepak, P., Prasad, M.D.: Operators for Similarity Search: Semantics, Techniques and Usage Scenarios. Springer, Heidelberg (2015)
Esuli, A.: Use of permutation prefixes for efficient and scalable approximate similarity search. Inf. Process. Manage. 48(5), 889–902 (2012)
Houle, M.E., Nett, M.: Rank-based similarity search: reducing the dimensional dependence. IEEE Trans. Pattern Anal. Mach. Intell. 37(1), 136–150 (2015)
Houle, M.E., Sakuma, J.: Fast approximate similarity search in extremely high-dimensional data sets. In: Proceedings of the 21st International Conference on Data Engineering (ICDE), pp. 619–630, April 2005
Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: state of the art and challenges. ACM Trans. Multimedia Comput. Commun. Appl. 2(1), 1–19 (2006)
Moško, J., Lokoč, J., Grošup, T., Čech, P., Skopal, T., Lánský, J.: MLES: multilayer exploration structure for multimedia exploration. In: Morzy, T., Valduriez, P., Bellatreche, L. (eds.) New Trends in Databases and Information Systems. Communications in Computer and Information Science, vol. 539, pp. 135–144. Springer, Switzerland (2015)
Novak, D., Batko, M., Zezula, P.: Generic similarity search engine demonstrated by an image retrieval application. In: Proceedings of the 32nd International ACM Conference on Research and Development in Information Retrieval (SIGIR), Boston, MA, USA, p. 840. ACM (2009)
Novak, D., Batko, M., Zezula, P.: Metric index: an efficient and scalable solution for precise and approximate similarity search. Inf. Syst. 36, 721–733 (2011)
Oliveira, P.H., Traina Jr., C., Kaster, D.S.: Improving the pruning ability of dynamic metric access methods with local additional pivots and anticipation of information. In: Morzy, T., Valduriez, P., Ladjel, B. (eds.) ADBIS 2015. LNCS, vol. 9282, pp. 18–31. Springer, Heidelberg (2015)
Samet, H.: Foundations of Multidimensional And Metric Data Structures. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, San Francisco (2006)
Skopal, T., Lokoc, J., Bustos, B.: D-cache: universal distance cache for metric access methods. IEEE Trans. Knowl. Data Eng. 24(5), 868–881 (2012)
Skopal, T., Hoksza, D.: Improving the performance of M-Tree family by nearest-neighbor graphs. In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007. LNCS, vol. 4690, pp. 172–188. Springer, Heidelberg (2007)
Skopal, T., Pokorný, J., Snášel, V.: Nearest neighbours search using the PM-Tree. In: Zhou, L., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 803–815. Springer, Heidelberg (2005)
Vilar, J.M.: Reducing the overhead of the AESA metric-space nearest neighbour searching algorithm. Inf. Process. Lett. 56(5), 265–271 (1995)
Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Advances in Database Systems, vol. 32. Springer, New York (2005)
Acknowledgements
This work was supported by Czech Science Foundation project GA16-18889S.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Antol, M., Dohnal, V. (2016). Optimizing Query Performance with Inverted Cache in Metric Spaces. In: Pokorný, J., Ivanović, M., Thalheim, B., Šaloun, P. (eds) Advances in Databases and Information Systems. ADBIS 2016. Lecture Notes in Computer Science(), vol 9809. Springer, Cham. https://doi.org/10.1007/978-3-319-44039-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-44039-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44038-5
Online ISBN: 978-3-319-44039-2
eBook Packages: Computer ScienceComputer Science (R0)