Abstract
The efficient tracking of articulated bodies over time is an essential element of pattern recognition and dynamic scenes analysis. This paper proposes a novel method for robust visual tracking, based on the combination of image-based prediction and weighted correlation. Starting from an initial guess, neural computation is applied to predict the position of the target in each video frame. Normalized cross-correlation is then applied to refine the predicted target position.
Image-based prediction relies on a novel architecture, derived from the Elman’s Recurrent Neural Networks and adopting nearest neighborhood connections between the input and context layers in order to store the temporal information content of the video. The proposed architecture, named 2D Recurrent Neural Network, ensures both a limited complexity and a very fast learning stage. At the same time, it guarantees fast execution times and excellent accuracy for the considered tracking task. The effectiveness of the proposed approach is demonstrated on a very challenging set of dynamic image sequences, extracted from the final of triple jump at the London 2012 Summer Olympics. The system shows remarkable performance in all considered cases, characterized by changing background and a large variety of articulated motions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Marr, D.: Vision: A Computational Approach. Freeman & Co., San Francisco (1982)
Ullman, S.: The interpretation of structure from motion. Proc. Roy. Soc. Lond. B: Biol. Sci. 203(1153), 405–426 (1979)
Gibson, J.J.: The Ecological Approach to Visual Perception, Classic edn. Psychology Press, New York (2014)
Denman, H., Rea, N., Kokaram, A.: Content-based analysis for video from snooker broadcasts. Comput. Vis. Image Underst. 92(2), 176–195 (2003)
Kokaram, A., Pitie, F., Dahyot, R., Rea, N., Yeterian, S.: Content controlled image representation for sports streaming. In: Proceedings of Content-Based Multimedia Indexing (CBMI05)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. (CSUR) 38(4), 13 (2006)
Hong, S., You, T., Kwak, S., Han, B.: Online tracking by learning discriminative saliency map with convolutional neural network, arXiv preprint arXiv:1502.06796
Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust L1 tracker using accelerated proximal gradient approach. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1830–1837. IEEE (2012)
Jia, X., Lu, H., Yang, M.-H.: Visual tracking via adaptive structural local sparse appearance model. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1822–1829. IEEE (2012)
Mei, X., Ling, H.: Robust visual tracking using L1 minimization. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1436–1443. IEEE (2009)
Babenko, B., Yang, M.-H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)
Hare, S., Saffari, A., Torr, P.H.: Struck: structured output tracking with kernels. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 263–270. IEEE (2011)
Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: BMVC, vol.1, p. 6 (2006)
Gall, J., Yao, A., Razavi, N., Van Gool, L., Lempitsky, V.: Hough forests for object detection, tracking, and action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2188–2202 (2011)
Schulter, S., Leistner, C., Roth, P.M., Bischof, H., Van Gool, L.J.: On-line hough forests. In: BMVC 2011, pp. 1–11 (2011)
Wang, X., Ma, L., Wang, B., Wang, T.: A hybrid optimization-based recurrent neural network for real-time data prediction. Neurocomputing 120, 547–559 (2013)
Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)
Korekado, K., Morie, T., Nomura, O., Ando, H., Nakano, T., Matsugu, M., Iwata, A.: A convolutional neural network VLSI for image recognition using merged/mixed analog-digital architecture. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2774, pp. 169–176. Springer, Heidelberg (2003)
Şeker, S., Ayaz, E., Türkcan, E.: Elman’s recurrent neural network applications to condition monitoring in nuclear power plant and rotating machinery. Eng. Appl. Artif. Intell. 16(7), 647–656 (2003)
Haykin, S.: Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall PTR, Upper Saddle River (1998)
Smeulders, A.W., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1442–1468 (2014)
Briechle, K., Hanebeck, U.D.: Template matching using fast normalized cross correlation. In: Aerospace/Defense Sensing, Simulation, and Controls, International Society for Optics and Photonics, pp. 95–102 (2001)
Baker, S., Matthews, I.: Lucas-kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56(3), 221–255 (2004)
Nguyen, H.T., Smeulders, A.W.: Fast occluded object tracking by a robust appearance filter. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1099–1104 (2004)
Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 798–805. IEEE (2006)
Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: Proceedings of 2000 IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 142–149. IEEE (2000)
Oron, S., Bar-Hillel, A., Levi, D., Avidan, S.: Locally orderless tracking. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1940–1947. IEEE (2012)
Ross, D.A., Lim, J., Lin, R.-S., Yang, M.-H.: Incremental learning for robust visual tracking. Int. J. Comput. Vision 77(1–3), 125–141 (2008)
Kwon, J., Lee, K.M., Park, F.C.: Visual tracking via geometric particle filtering on the affine group with optimal importance functions. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition CVPR 2009, pp. 991–998. IEEE (2009)
Kwon, J., Lee, K.M.: Tracking by sampling trackers. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1195–1202. IEEE (2011)
Kwon, J., Lee, K.M.: Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping monte carlo sampling. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009 CVPR 2009, pp. 1208–1215. IEEE (2009)
Čehovin, L., Kristan, M., Leonardis, A.: An adaptive coupled-layer visual model for robust visual tracking. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1363–1370. IEEE (2011)
Mei, X., Ling, H., Wu, Y., Blasch, E., Bai, L.: Minimum error bounded efficient L1 tracker with occlusion detection. In: Proceedings of IEEE CVPR, Providence, RI, USA (2011)
Nguyen, H.T., Smeulders, A.W.: Robust tracking using foreground-background texture discrimination. Int. J. Comput. Vision 69(3), 277–293 (2006)
Godec, M., Roth, P.M., Bischof, H.: Hough-based tracking of non-rigid objects. Comput. Vis. Image Underst. 117(10), 1245–1256 (2013)
Yang, F., Lu, H., Yang, M.-H.: Robust superpixel tracking. IEEE Trans. Image Process. 23(4), 1639–1651 (2014)
Kalal, Z., Matas, J., Mikolajczyk, K.: PN learning: Bootstrapping binary classifiers by structural constraints. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 49–56. IEEE (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Masala, G.L., Golosio, B., Tistarelli, M., Grosso, E. (2016). 2D Recurrent Neural Networks for Robust Visual Tracking of Non-Rigid Bodies. In: Jayne, C., Iliadis, L. (eds) Engineering Applications of Neural Networks. EANN 2016. Communications in Computer and Information Science, vol 629. Springer, Cham. https://doi.org/10.1007/978-3-319-44188-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-44188-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44187-0
Online ISBN: 978-3-319-44188-7
eBook Packages: Computer ScienceComputer Science (R0)