Skip to main content

Semi-supervised Hybrid Modeling of Atmospheric Pollution in Urban Centers

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2016)

Abstract

Air pollution is directly linked with the development of technology and science, the progress of which besides significant benefits to mankind it also has adverse effects on the environment and hence on human health. The problem has begun to take worrying proportions especially in large urban centers, where 60,000 deaths are reported each year in Europe’s towns and 3,000,000 worldwide, due to long-term air pollution exposure (exposure of the European Agency for the Environment http://www.eea.europa.eu/). In this paper we propose a novel and flexible hybrid machine learning system that combines Semi-Supervised Classification and Semi-Supervised Clustering, in order to realize prediction of air pollutants outliers and to study the conditions that favor their high concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bougoudis, I., Iliadis, L., Papaleonidas, A.: Fuzzy inference ANN ensembles for air pollutants modeling in a major urban area: the case of Athens. In: Mladenov, V., Jayne, C., Iliadis, L. (eds.) EANN 2014. CCIS, vol. 459, pp. 1–14. Springer, Heidelberg (2014)

    Google Scholar 

  2. Bougoudis, I., Iliadis, L., Spartalis, S.: Comparison of self organizing maps clustering with supervised classification for air pollution data sets. In: Iliadis, L., Maglogiannis, L., Papadopoulos, H. (eds.) AIAI 2014. IFIP AICT, vol. 436, pp. 424–435. Springer, Heidelberg (2014)

    Google Scholar 

  3. Bougoudis, I., Demertzis, K., Iliadis, L.: Fast and low cost prediction of extreme air pollution values with hybrid unsupervised learning. Integr. Comput.-Aided Eng. 23(2), 115–127 (2016). doi:10.3233/ICA-150505. IOS Press

    Article  Google Scholar 

  4. Bougoudis, I., Demertzis, K., Iliadis, L.: HISYCOL a hybrid computational intelligence system for combined machine learning: the case of air pollution modeling in Athens. EANN Neural Comput. Appl. 1–16 (2016). doi:10.1007/s00521-015-1927-7

    Google Scholar 

  5. Roy, S.: Prediction of particulate matter concentrations using artificial neural network. Resour. Environ. 2(2), 30–36 (2012). doi:10.5923/j.re.20120202.05

    Article  Google Scholar 

  6. Robles, L.A., Ortega, J.C., Fu, J.S., Reed, G.D., Chow, J.C., Watson, J.G., Moncada-Herrera, J.A.: A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmos. Environ. 42(35), 8331–8340 (2008)

    Article  Google Scholar 

  7. Ordieres Meré, J.B., Vergara González, E.P., Capuz, R.S., Salaza, R.E.: Neural network prediction model for fine particulate matter (PM). Environ. Model Softw. 20, 547–559 (2005)

    Article  Google Scholar 

  8. Wahab, A., Al-Alawi, S.M.: Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environ. Model. 17, 219–228 (2002)

    Article  Google Scholar 

  9. Paschalidou, A., Iliadis, L., Kassomenos, P., Bezirtzoglou, C.: Neural modeling of the tropospheric ozone concentrations in an urban site. In: Proceedings of 10th International Conference Engineering Applications of Neural Networks, pp. 436–445 (2007)

    Google Scholar 

  10. Ozcan, H.K., Bilgili, E., Sahin, U., Bayat, C.: Modeling of trophospheric ozone concentrations using genetically trained multi-level cellular neural networks. Advances in Atmospheric Sciences, vol. 24, pp. 907–914. Springer, Heidelberg (2007)

    Google Scholar 

  11. Ozdemir, H., Demir, G., Altay, G., Albayrak, S., Bayat, C.: Prediction of tropospheric ozone concentration by employing artificial neural networks. Environ. Eng. Sci. 25(9), 1249–1254 (2008)

    Article  Google Scholar 

  12. Inal, F.: Artificial neural network prediction of tropospheric ozone concentrations in Istanbul, Turkey. CLEAN – Soil Air Water 38(10), 897–908 (2010)

    Article  MathSciNet  Google Scholar 

  13. Paoli, C.: A neural network model forecasting for prediction of hourly ozone concentration in Corsica. In: Proceedings IEEE of 10th International Conference on EEEIC (2011)

    Google Scholar 

  14. Kadri, C., Tian, F., Zhang, L., Dang, L., Li, G.: Neural network ensembles for online gas concentration estimation using an electronic nose. IJCS 10(2), 1 (2013)

    Google Scholar 

  15. Vong, C.-M., Ip, W.-F., Wong, P.-K., Yang, J.-Y.: Short-term prediction of air pollution in Macau using support vector machines. J. Control Sci. Eng. 2012, 4 (2012). Article ID 518032

    Article  MATH  Google Scholar 

  16. Xiao, F., Li, Q., Zhu, Y., Hou, J., Jin, L., Wang, J.: Artificial neural networks forecasting of PM 2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 107, 118–128 (2015). doi:10.1016/j.atmosenv.2015.02.030. Elsevier

    Article  Google Scholar 

  17. Zabkar, R., Cemas, D.: Ground-level ozone forecast based on ML. AIR040051 (2004)

    Google Scholar 

  18. Lopez-Rubio, E., Palomo, E.J., Dominguez, E.: Bregman divergences for growing hierarchical self-organizing networks. Int. J. Neural Syst. 24, 4 (2014). 1450016

    Article  Google Scholar 

  19. Menendez, H., Barrero, D.F., Camacho, D.: A genetic graph-based approach to the partitional clustering. Int. J. Neural Syst. 24, 3 (2014). 1430008

    Article  Google Scholar 

  20. Donos, C., Duemoelmann, M., Schulze-Bonhage, A.: Early seizure detection algorithm based on intractable EEG and random forest classification. IJNS 25, 5 (2015). 1550023

    Google Scholar 

  21. Quirós, P., Alonso, P., Díaz, I., Montes, S.: On the use of fuzzy partitions to protect data. Integr. Comput.-Aided Eng. 21(4), 355–366 (2014)

    Google Scholar 

  22. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. Assoc. Adv. AI 29(3), 93 (2015)

    Google Scholar 

  23. Driessens, K., Reutemann, P., Pfahringer, B., Leschi, C.: Using weighted nearest neighbor to benefit from unlabeled data. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 60–69. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios Papaleonidas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bougoudis, I., Demertzis, K., Iliadis, L., Anezakis, VD., Papaleonidas, A. (2016). Semi-supervised Hybrid Modeling of Atmospheric Pollution in Urban Centers. In: Jayne, C., Iliadis, L. (eds) Engineering Applications of Neural Networks. EANN 2016. Communications in Computer and Information Science, vol 629. Springer, Cham. https://doi.org/10.1007/978-3-319-44188-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44188-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44187-0

  • Online ISBN: 978-3-319-44188-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics