Skip to main content

Module Detection in Dynamic Networks by Temporal Edge Weight Clustering

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9874))

Abstract

While computational systems biology provides a rich array of methods for network clustering, most of them are not suitable to capture cellular network dynamics. In the most common setting, computational algorithms seek to integrate the static information embedded in near-global interaction networks with the temporal information provided by time series experiments. We present a novel technique for temporally informed network module detection, named TD-WGcluster (Time Delay Weighted Graph CLUSTERing). TD-WGcluster utilizes four steps: (i) time-lagged correlations are calculated between any couple of interacting nodes in the network; (ii) an unsupervised version of k-means algorithm detects sub-graphs with similar time-lagged correlation; (iii) a fast-greedy optimization algorithm identify connected components by sub-graph; (iv) a geometric entropy is computed for each connected component as a measure of its complexity. TD-WGcluster notable feature is the attempt to account for temporal delays in the formation of regulatory modules during signal propagation in a network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonneau, R., Reiss, D., Shannon, P., Facciotti, M., Hood, L., Baliga, N., Thorsson, V.: The inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 7(5), R36 (2006)

    Article  Google Scholar 

  2. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3, 1–27 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chae, J., Kim, J., Woo, S., Han, H., Cho, Y., Oh, K., Nam, K., Kang, Y.: Cytoskeleton-associated proteins are enriched in human embryonic-stem cell-derived neuroectodermal spheres. Proteomics 9(5), 1128–41 (2009)

    Article  Google Scholar 

  4. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)

    Article  Google Scholar 

  5. Draghici, S., Khatri, P., Tarca, A., Amin, K., Done, A., Voichita, C., Georgescu, C., Romero, R.: A systems biology approach for pathway level analysis. Genome Res. 17(10), 1537–1545 (2007)

    Article  Google Scholar 

  6. Du, Q., Emelianenkom, M., Ju, L.: Convergence of the Lloyd algorithm for computing centroidal Voronoi tesellation. SIAM J. Numer. Anal. 44(1), 102–119 (2006). http://www.personal.psu.edu/qud2/Res/Pre/dej06sinum.pdf

    Article  MathSciNet  MATH  Google Scholar 

  7. DâĂŹUrso, P., Maharaj, E.A.: Autocorrelation-based fuzzy clustering of time series. Fuzzy Sets Syst. 160(24), 3565–3589 (2009)

    Article  MathSciNet  Google Scholar 

  8. Folmes, C., Nelson, T., Martinez-Fernandez, A., Arrell, D., Lindor, J., Dzeja, P., Ikeda, Y., Perez-Terzic, C., Terzic, A.: Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14(2), 264–271 (2011)

    Article  Google Scholar 

  9. Goffard, N., Weiller, G.: Pathexpress: a web-based tool to identify relevant pathways in gene expression data. Nucleic Acids Res. 35, W176–W181 (2007). Web Server issue

    Article  Google Scholar 

  10. Guo, Z., Wang, L., Li, Y., Gong, X., Yao, C., Ma, W., Wang, D., Li, Y., Zhu, J., Zhang, M., Yang, D., Rao, S., Wang, J.: Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction sub-network. Bioinformatics (Oxford, England) 23(16), 2121–2128 (2007)

    Article  Google Scholar 

  11. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics (Oxford, England) 18(Suppl 1), S233–S240 (2002)

    Article  Google Scholar 

  12. Johannesson, T., Bjornsson, H.: Stineman, a consistently well behaved method of interpolation (2012). http://rpackages.ianhowson.com/cran/stinepack/. Accessed 01 July 2015

  13. Kida, Y., Kawamura, T., Wei, Z., Sogo, T., Jacinto, S., Shigeno, A., Kushige, H., Yoshihara, E., Liddle, C., Ecker, J., Yu, R., Atkins, A., Downes, M., Evans, R.: ERRs mediate a metabolic switch required for somatic cell reprogramming to pluripotency. Cell Stem Cell 16(5), 547–555 (2015)

    Article  Google Scholar 

  14. Kinney, M., Saeed, R., McDevitt, T.: Mesenchymal morphogenesis of embryonic stem cells dynamically modulates the biophysical microtissue niche. Sci. Rep. 4, 4290 (2014)

    Article  Google Scholar 

  15. Krieg, M., Arboleda-Estudillo, Y., Puech, P., KÃd’fer, J., Graner, F., MÃijller, D., Heisenberg, C.: Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10(4), 429–436 (2008)

    Article  Google Scholar 

  16. Lecca, P.: Software - TD-WGcluster Technical Report (2016). https://sites.google.com/site/paolaleccapersonalpage/software

  17. Li, M., Wu, X., Wang, J., Pan, Y.: Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data. BMC Bioinformatics 13, 109 (2012)

    Article  Google Scholar 

  18. Liao, J., Boscolo, R., Yang, Y., Tran, L., Sabatti, C., Roychowdhury, V.: Network component analysis: reconstruction of regulatory signals in biological systems. Proc. Nat. Acad. Sci. U.S.A. 100(26), 15522–15527 (2003)

    Article  Google Scholar 

  19. Makridakis, S.G., Wheelwright, S.C., Hyndman, R.J.: Forecasting: Methods and Applications. Wiley, New York (1998)

    Google Scholar 

  20. Mulvey, C., Schröter, C., Gatto, L., Dikicioglu, D., Fidaner, I., Christoforou, A., Deery, M., Cho, L., Niakan, K., Martinez-Arias, A., Lilley, K.: Dynamic proteomic profiling of extra-embryonic endoderm differentiation in mouse embryonic stem cells. Stem Cells (Dayton, Ohio) 33(9), 2712–2725 (2015)

    Article  Google Scholar 

  21. Neath, A.A., Cavanaugh, J.E.: The Bayesian information criterion: background, derivation, and applications. Wiley Interdisc. Rev. Comput. Stat. 4(2), 199–203 (2012). http://dx.doi.org/10.1002/wics.199

    Article  Google Scholar 

  22. Nooren, I., Thornton, J.: Diversity of protein-protein interactions. EMBO J. 22(14), 3486–3492 (2003)

    Article  Google Scholar 

  23. Ou-Yang, L., Dai, D., Li, X., Wu, M., Zhang, X., Yang, P.: Detecting temporal protein complexes from dynamic protein-protein interaction networks. BMC Bioinformatics 15, 335 (2014)

    Article  Google Scholar 

  24. Park, Y., Bader, J.: How networks change with time. Bioinformatics (Oxford, England) 28(12), i40–i48 (2012)

    Article  Google Scholar 

  25. Patil, A., Nakai, K.: Timexnet: identifying active gene sub-networks using time-course gene expression profiles. BMC Syst. Biol. 8(Suppl 4), S2 (2014)

    Article  Google Scholar 

  26. Pereira, S., GrÃčos, M., Rodrigues, A., Anjo, S., Carvalho, R., Oliveira, P., Arenas, E., Ramalho-Santos, J.: Inhibition of mitochondrial complex III blocks neuronal differentiation and maintains embryonic stem cell pluripotency. PloS One 8(12), e82095 (2013)

    Article  Google Scholar 

  27. Sarda-Espinosa, A.: Time series clustering along with optimizations for the dynamic time warping distance (2016). http://rpackages.ianhowson.com/cran/dtwclust/

  28. Schulz, M., Devanny, W., Gitter, A., Zhong, S., Ernst, J., Bar-Joseph, Z.: Drem 2.0: improved reconstruction of dynamic regulatory networks from time-series expression data. BMC Syst. Biol. 6, 104 (2012)

    Article  Google Scholar 

  29. Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., Friedman, N.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34(2), 166–176 (2003)

    Article  Google Scholar 

  30. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and its Applications: With R Examples. Springer, New York (2011)

    Book  MATH  Google Scholar 

  31. Suh, H., Han, H.: Collagen I regulates the self-renewal of mouse embryonic stem cells through \({\upalpha }2{\upbeta }1\) integrin- and DDR1-dependent BMI-1. J. Cell. Physiol. 226(12), 3422–3432 (2011)

    Article  Google Scholar 

  32. Tarca, A., Draghici, S., Khatri, P., Hassan, S., Mittal, P., Kim, J., Kim, C., Kusanovic, J., Romero, R.: A novel signaling pathway impact analysis. Bioinformatics (Oxford, England) 25(1), 75–82 (2009)

    Article  Google Scholar 

  33. Teslaa, T., Teitell, M.: Pluripotent stem cell energy metabolism: an update. EMBO J. (Oxford, England) 34(2), 138–153 (2015)

    Google Scholar 

  34. Tian, L., Greenberg, S., Kong, S., Altschuler, J., Kohane, I., Park, P.: Discovering statistically significant pathways in expression profiling studies. Proc. Nat. Acad. Sci. U.S.A. 102(38), 13544–13549 (2005)

    Article  Google Scholar 

  35. Wang, J., Peng, X., Li, M., Pan, Y.: Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics 13(2), 301–312 (2013)

    Article  Google Scholar 

  36. Warsow, G., Greber, B., Falk, S., Harder, C., Siatkowski, M., Schordan, S., Som, A., Endlich, N., SchÃűler, H., Repsilber, D., Endlich, K., Fuellen, G.: Expressence-revealing the essence of differential experimental data in the context of an interaction/regulation network. BMC Syst. Biol. 4, 164 (2010)

    Article  Google Scholar 

  37. Wise, A., Bar-Joseph, Z.: Smarts: reconstructing disease response networks from multiple individuals using time series gene expression data. Bioinformatics 31(8), 1250–1257 (2015)

    Article  Google Scholar 

  38. Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T., Yamanaka, S.: Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5(3), 237–241 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Lecca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lecca, P., Re, A. (2016). Module Detection in Dynamic Networks by Temporal Edge Weight Clustering. In: Angelini, C., Rancoita, P., Rovetta, S. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2015. Lecture Notes in Computer Science(), vol 9874. Springer, Cham. https://doi.org/10.1007/978-3-319-44332-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44332-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44331-7

  • Online ISBN: 978-3-319-44332-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics