Abstract
While computational systems biology provides a rich array of methods for network clustering, most of them are not suitable to capture cellular network dynamics. In the most common setting, computational algorithms seek to integrate the static information embedded in near-global interaction networks with the temporal information provided by time series experiments. We present a novel technique for temporally informed network module detection, named TD-WGcluster (Time Delay Weighted Graph CLUSTERing). TD-WGcluster utilizes four steps: (i) time-lagged correlations are calculated between any couple of interacting nodes in the network; (ii) an unsupervised version of k-means algorithm detects sub-graphs with similar time-lagged correlation; (iii) a fast-greedy optimization algorithm identify connected components by sub-graph; (iv) a geometric entropy is computed for each connected component as a measure of its complexity. TD-WGcluster notable feature is the attempt to account for temporal delays in the formation of regulatory modules during signal propagation in a network.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bonneau, R., Reiss, D., Shannon, P., Facciotti, M., Hood, L., Baliga, N., Thorsson, V.: The inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 7(5), R36 (2006)
Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3, 1–27 (1974)
Chae, J., Kim, J., Woo, S., Han, H., Cho, Y., Oh, K., Nam, K., Kang, Y.: Cytoskeleton-associated proteins are enriched in human embryonic-stem cell-derived neuroectodermal spheres. Proteomics 9(5), 1128–41 (2009)
Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)
Draghici, S., Khatri, P., Tarca, A., Amin, K., Done, A., Voichita, C., Georgescu, C., Romero, R.: A systems biology approach for pathway level analysis. Genome Res. 17(10), 1537–1545 (2007)
Du, Q., Emelianenkom, M., Ju, L.: Convergence of the Lloyd algorithm for computing centroidal Voronoi tesellation. SIAM J. Numer. Anal. 44(1), 102–119 (2006). http://www.personal.psu.edu/qud2/Res/Pre/dej06sinum.pdf
DâĂŹUrso, P., Maharaj, E.A.: Autocorrelation-based fuzzy clustering of time series. Fuzzy Sets Syst. 160(24), 3565–3589 (2009)
Folmes, C., Nelson, T., Martinez-Fernandez, A., Arrell, D., Lindor, J., Dzeja, P., Ikeda, Y., Perez-Terzic, C., Terzic, A.: Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14(2), 264–271 (2011)
Goffard, N., Weiller, G.: Pathexpress: a web-based tool to identify relevant pathways in gene expression data. Nucleic Acids Res. 35, W176–W181 (2007). Web Server issue
Guo, Z., Wang, L., Li, Y., Gong, X., Yao, C., Ma, W., Wang, D., Li, Y., Zhu, J., Zhang, M., Yang, D., Rao, S., Wang, J.: Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction sub-network. Bioinformatics (Oxford, England) 23(16), 2121–2128 (2007)
Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics (Oxford, England) 18(Suppl 1), S233–S240 (2002)
Johannesson, T., Bjornsson, H.: Stineman, a consistently well behaved method of interpolation (2012). http://rpackages.ianhowson.com/cran/stinepack/. Accessed 01 July 2015
Kida, Y., Kawamura, T., Wei, Z., Sogo, T., Jacinto, S., Shigeno, A., Kushige, H., Yoshihara, E., Liddle, C., Ecker, J., Yu, R., Atkins, A., Downes, M., Evans, R.: ERRs mediate a metabolic switch required for somatic cell reprogramming to pluripotency. Cell Stem Cell 16(5), 547–555 (2015)
Kinney, M., Saeed, R., McDevitt, T.: Mesenchymal morphogenesis of embryonic stem cells dynamically modulates the biophysical microtissue niche. Sci. Rep. 4, 4290 (2014)
Krieg, M., Arboleda-Estudillo, Y., Puech, P., KÃd’fer, J., Graner, F., MÃijller, D., Heisenberg, C.: Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10(4), 429–436 (2008)
Lecca, P.: Software - TD-WGcluster Technical Report (2016). https://sites.google.com/site/paolaleccapersonalpage/software
Li, M., Wu, X., Wang, J., Pan, Y.: Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data. BMC Bioinformatics 13, 109 (2012)
Liao, J., Boscolo, R., Yang, Y., Tran, L., Sabatti, C., Roychowdhury, V.: Network component analysis: reconstruction of regulatory signals in biological systems. Proc. Nat. Acad. Sci. U.S.A. 100(26), 15522–15527 (2003)
Makridakis, S.G., Wheelwright, S.C., Hyndman, R.J.: Forecasting: Methods and Applications. Wiley, New York (1998)
Mulvey, C., Schröter, C., Gatto, L., Dikicioglu, D., Fidaner, I., Christoforou, A., Deery, M., Cho, L., Niakan, K., Martinez-Arias, A., Lilley, K.: Dynamic proteomic profiling of extra-embryonic endoderm differentiation in mouse embryonic stem cells. Stem Cells (Dayton, Ohio) 33(9), 2712–2725 (2015)
Neath, A.A., Cavanaugh, J.E.: The Bayesian information criterion: background, derivation, and applications. Wiley Interdisc. Rev. Comput. Stat. 4(2), 199–203 (2012). http://dx.doi.org/10.1002/wics.199
Nooren, I., Thornton, J.: Diversity of protein-protein interactions. EMBO J. 22(14), 3486–3492 (2003)
Ou-Yang, L., Dai, D., Li, X., Wu, M., Zhang, X., Yang, P.: Detecting temporal protein complexes from dynamic protein-protein interaction networks. BMC Bioinformatics 15, 335 (2014)
Park, Y., Bader, J.: How networks change with time. Bioinformatics (Oxford, England) 28(12), i40–i48 (2012)
Patil, A., Nakai, K.: Timexnet: identifying active gene sub-networks using time-course gene expression profiles. BMC Syst. Biol. 8(Suppl 4), S2 (2014)
Pereira, S., GrÃčos, M., Rodrigues, A., Anjo, S., Carvalho, R., Oliveira, P., Arenas, E., Ramalho-Santos, J.: Inhibition of mitochondrial complex III blocks neuronal differentiation and maintains embryonic stem cell pluripotency. PloS One 8(12), e82095 (2013)
Sarda-Espinosa, A.: Time series clustering along with optimizations for the dynamic time warping distance (2016). http://rpackages.ianhowson.com/cran/dtwclust/
Schulz, M., Devanny, W., Gitter, A., Zhong, S., Ernst, J., Bar-Joseph, Z.: Drem 2.0: improved reconstruction of dynamic regulatory networks from time-series expression data. BMC Syst. Biol. 6, 104 (2012)
Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., Friedman, N.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34(2), 166–176 (2003)
Shumway, R.H., Stoffer, D.S.: Time Series Analysis and its Applications: With R Examples. Springer, New York (2011)
Suh, H., Han, H.: Collagen I regulates the self-renewal of mouse embryonic stem cells through \({\upalpha }2{\upbeta }1\) integrin- and DDR1-dependent BMI-1. J. Cell. Physiol. 226(12), 3422–3432 (2011)
Tarca, A., Draghici, S., Khatri, P., Hassan, S., Mittal, P., Kim, J., Kim, C., Kusanovic, J., Romero, R.: A novel signaling pathway impact analysis. Bioinformatics (Oxford, England) 25(1), 75–82 (2009)
Teslaa, T., Teitell, M.: Pluripotent stem cell energy metabolism: an update. EMBO J. (Oxford, England) 34(2), 138–153 (2015)
Tian, L., Greenberg, S., Kong, S., Altschuler, J., Kohane, I., Park, P.: Discovering statistically significant pathways in expression profiling studies. Proc. Nat. Acad. Sci. U.S.A. 102(38), 13544–13549 (2005)
Wang, J., Peng, X., Li, M., Pan, Y.: Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics 13(2), 301–312 (2013)
Warsow, G., Greber, B., Falk, S., Harder, C., Siatkowski, M., Schordan, S., Som, A., Endlich, N., SchÃűler, H., Repsilber, D., Endlich, K., Fuellen, G.: Expressence-revealing the essence of differential experimental data in the context of an interaction/regulation network. BMC Syst. Biol. 4, 164 (2010)
Wise, A., Bar-Joseph, Z.: Smarts: reconstructing disease response networks from multiple individuals using time series gene expression data. Bioinformatics 31(8), 1250–1257 (2015)
Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T., Yamanaka, S.: Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5(3), 237–241 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Lecca, P., Re, A. (2016). Module Detection in Dynamic Networks by Temporal Edge Weight Clustering. In: Angelini, C., Rancoita, P., Rovetta, S. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2015. Lecture Notes in Computer Science(), vol 9874. Springer, Cham. https://doi.org/10.1007/978-3-319-44332-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-44332-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44331-7
Online ISBN: 978-3-319-44332-4
eBook Packages: Computer ScienceComputer Science (R0)