Skip to main content

Characteristics of Pedestrian and Vehicle Flows at a Roundabout System

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9863))

Included in the following conference series:

Abstract

For the purposes of optimizing vehicle flow and improving the crossings pedestrian safety, it is important to understand pedestrians-vehicles behaviors. This paper proposes a cellular automata model to study the interactions of crossings pedestrian and traffic flow on a single lane roundabout. The boundary is controlled by the injecting rates \( \upalpha_{1} ,\upalpha_{2} \) and the extracting rate \( \upbeta \). Meanwhile, the crossing pedestrian decision is modeled with a gap acceptance rule. The results show that, pedestrian (resp. vehicular) flow can benefit from small (resp. large) gap acceptance to decrease the interferences vehicles-pedestrians. Likewise, we found that the crosswalk location play a chief role in improving the satisfaction of both pedestrians and vehicles. However, the use of slowdown sections provokes a decrease in pedestrians-vehicles interactions and increases the traffic capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagel, K., Schreckenberg, M.: J. Phys. I 2(12), 2221–2229 (1992)

    Google Scholar 

  2. Helbing, D.: Rev. Mod. Phys. 73, 1068 (2001)

    Article  Google Scholar 

  3. Lighthill, M.J., Whitham, G.B.: Proc. R. Soc. London A 299, 317–345 (1955)

    Google Scholar 

  4. Nagatani, T., Nakanishi, K., Emmerich, H.: J. Phys. A: Math. Gen. 31(24), 5431 (1998)

    Article  Google Scholar 

  5. Echab, H., Lakouari, N., Ez-Zahraouy, H., Benyoussef, A.: Int. J. Mod. Phys. C 27, 1650009 (2016)

    Article  Google Scholar 

  6. Barlovic, R., Santen, L., Schadschneider, A., Schreckenberg, M.: Eur. Phys. J. B 5, 793 (1998)

    Article  Google Scholar 

  7. Huang, D.W.: Internat. J. Modern. Phys. C 21, 189 (2010)

    Google Scholar 

  8. Echab, H., Lakouari, N., Ez-Zahraouy, H., Benyoussef, A.: Int. J. Mod. Phys. C 26, 1550100 (2015)

    Article  MathSciNet  Google Scholar 

  9. Huang, D.W.: Internat. J. Mod. Phys. C 21, 189 (2010)

    Article  Google Scholar 

  10. Echab, H., Lakouari, N., Ez-Zahraouy, H., Benyoussef, A.: Phys. Lett. A 380, 992 (2016)

    Article  Google Scholar 

  11. Yamamoto, K., Kokubo, S., Nishinari, K.: Phys. A 379, 654 (2007)

    Article  Google Scholar 

  12. Xin, X.Y., Jia, N., Zheng, L., Ma, S.F.: Phys. A 406, 287 (2014)

    Article  Google Scholar 

  13. Cherry, C., Donlon, B., Yan, X.D.: Int. J. Inj. Control Saf. Promot. 19, 320 (2012)

    Article  Google Scholar 

  14. Muramatsu, M., Irie, T., Nagatani, T.: Phys. A 267, 487 (1999)

    Article  Google Scholar 

  15. Perez, G.J., Tapang, G., Lim, M.: Phys. A 312, 609 (2002)

    Article  Google Scholar 

  16. Gang, L., Jing, H., Zhiyong, L., Wunian, Y., Xiping, Z.: Int. J. Mod. Phys. B 29, 1550100 (2015)

    Article  Google Scholar 

  17. Feng, S.M., Ding, N., Chen, T., Zhang, H.: Phys. A 392, 2847 (2013)

    Article  Google Scholar 

  18. Zhang, Y., Duan, H.: Tsinghua Sci. Technol. 12, 214 (2007)

    Article  Google Scholar 

  19. Xie, D., Gao, Z., Zhao, X., Wang, D.Z.W.: J. Transp. Eng. 138, 1442 (2012)

    Article  Google Scholar 

  20. Zhang, J., Wang, H., Li, P., Zhejiang, J.: Univ. Sci. 835 (2004)

    Google Scholar 

  21. Transportation Research Board: HCM. National Research Council, Washington DC (2000)

    Google Scholar 

  22. Wan, B., Rouphail, N.M.: Transp. Res. Rec. 1878, 58 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hicham Echab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Echab, H., Ez-Zahraouy, H., Lakouari, N., Marzoug, R. (2016). Characteristics of Pedestrian and Vehicle Flows at a Roundabout System. In: El Yacoubi, S., Wąs, J., Bandini, S. (eds) Cellular Automata. ACRI 2016. Lecture Notes in Computer Science(), vol 9863. Springer, Cham. https://doi.org/10.1007/978-3-319-44365-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44365-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44364-5

  • Online ISBN: 978-3-319-44365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics