Skip to main content

FETA: Federated QuEry TrAcking for Linked Data

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9828))

Included in the following conference series:

  • 939 Accesses

Abstract

Following the principles of Linked Data (LD), data providers are producing thousands of interlinked datasets in multiple domains including life science, government, social networking, media and publications. Federated query engines allow data consumers to query several datasets through a federation of SPARQL endpoints. However, data providers just receive subqueries resulting from the decomposition of the original federated query. Consequently, they do not know how their data are crossed with other datasets of the federation. In this paper, we propose FETA, a Federated quEry TrAcking system for LD. We consider that data providers collaborate by sharing their query logs. Then, from a federated log, FETA infers Basic Graph Patterns (BGPs) containing joined triple patterns, executed among endpoints. We experimented FETA with logs produced by FedBench queries executed with Anapsid and FedX federated query engines. Experiments show that FETA is able to infer BGPs of joined triple patterns with a good precision and recall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://fedbench.fluidops.net/.

  2. 2.

    http://virtuoso.openlinksw.com/.

  3. 3.

    http://justniffer.sourceforge.net/.

References

  1. Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Basca, C., Bernstein, A.: Avalanche: putting the spirit of the web back into semantic web querying. In: International Semantic Web Conference (ISWC) (2010)

    Google Scholar 

  3. Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VOID descriptions. In: International Workshop on Consuming Linked Data (COLD) (2011)

    Google Scholar 

  4. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Elsevier, London (2011)

    MATH  Google Scholar 

  5. Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL queries over the web of linked data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Discovery 1(3), 259–289 (1997)

    Article  Google Scholar 

  7. Mooney, C.H., Roddick, J.F.: Sequential pattern mining-approaches and algorithms. ACM Comput. Surv. (CSUR) 45(2), 19 (2013)

    Article  MATH  Google Scholar 

  8. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. (TODS) 34(3), 16:1–16:45 (2009)

    Article  Google Scholar 

  9. Quilitz, B., Leser, U.: querying distributed RDF data sources with SPARQL. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: FedBench: a benchmark suite for federated semantic data query processing. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 585–600. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization techniques for federated query processing on linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Van Der Aalst, W.: Process Mining: Discovery Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the French ANR project SocioPlug (ANR-13-INFR-0003), and by the DeSceNt project granted by the Labex CominLabs excellence laboratory (ANR-10-LABX-07-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Nassopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nassopoulos, G., Serrano-Alvarado, P., Molli, P., Desmontils, E. (2016). FETA: Federated QuEry TrAcking for Linked Data. In: Hartmann, S., Ma, H. (eds) Database and Expert Systems Applications. DEXA 2016. Lecture Notes in Computer Science(), vol 9828. Springer, Cham. https://doi.org/10.1007/978-3-319-44406-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44406-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44405-5

  • Online ISBN: 978-3-319-44406-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics