Abstract
Following the principles of Linked Data (LD), data providers are producing thousands of interlinked datasets in multiple domains including life science, government, social networking, media and publications. Federated query engines allow data consumers to query several datasets through a federation of SPARQL endpoints. However, data providers just receive subqueries resulting from the decomposition of the original federated query. Consequently, they do not know how their data are crossed with other datasets of the federation. In this paper, we propose FETA, a Federated quEry TrAcking system for LD. We consider that data providers collaborate by sharing their query logs. Then, from a federated log, FETA infers Basic Graph Patterns (BGPs) containing joined triple patterns, executed among endpoints. We experimented FETA with logs produced by FedBench queries executed with Anapsid and FedX federated query engines. Experiments show that FETA is able to infer BGPs of joined triple patterns with a good precision and recall.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011)
Basca, C., Bernstein, A.: Avalanche: putting the spirit of the web back into semantic web querying. In: International Semantic Web Conference (ISWC) (2010)
Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VOID descriptions. In: International Workshop on Consuming Linked Data (COLD) (2011)
Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Elsevier, London (2011)
Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL queries over the web of linked data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309. Springer, Heidelberg (2009)
Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Min. Knowl. Discovery 1(3), 259–289 (1997)
Mooney, C.H., Roddick, J.F.: Sequential pattern mining-approaches and algorithms. ACM Comput. Surv. (CSUR) 45(2), 19 (2013)
Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. (TODS) 34(3), 16:1–16:45 (2009)
Quilitz, B., Leser, U.: querying distributed RDF data sources with SPARQL. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008)
Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: FedBench: a benchmark suite for federated semantic data query processing. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 585–600. Springer, Heidelberg (2011)
Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization techniques for federated query processing on linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011)
Van Der Aalst, W.: Process Mining: Discovery Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)
Acknowledgments
This work was partially funded by the French ANR project SocioPlug (ANR-13-INFR-0003), and by the DeSceNt project granted by the Labex CominLabs excellence laboratory (ANR-10-LABX-07-01).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Nassopoulos, G., Serrano-Alvarado, P., Molli, P., Desmontils, E. (2016). FETA: Federated QuEry TrAcking for Linked Data. In: Hartmann, S., Ma, H. (eds) Database and Expert Systems Applications. DEXA 2016. Lecture Notes in Computer Science(), vol 9828. Springer, Cham. https://doi.org/10.1007/978-3-319-44406-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-44406-2_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44405-5
Online ISBN: 978-3-319-44406-2
eBook Packages: Computer ScienceComputer Science (R0)