Skip to main content

Observing the Effects of Overdesign in the Automatic Design of Control Software for Robot Swarms

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9882))

Included in the following conference series:

Abstract

We present the results of an experiment in the automatic design of control software for robot swarms. We conceived the experiment to corroborate a hypothesis that we proposed in a previous publication: the reality gap problem bears strong resemblance to the generalization problem faced in supervised learning. In particular, thanks to this experiment we observe for the first time a phenomenon that we shall call overdesign. Overdesign is the automatic design counterpart of the well known overfitting problem encountered in machine learning. Past an optimal level of the design effort, the longer the design process is protracted, the better the performance of the swarm becomes in simulation and the worst in reality. Our results show that some sort of early stopping mechanism could be beneficial.

This research was conceived by MB and GF and was directed by MB. The experiment was performed by YK using automatic design software developed by BD on the basis of a previous version by GF. The article was drafted by MB and GF. All authors read the manuscript and provided feedback. BD is currently with the Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Genova, Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a more advanced and general treatment of the issue, see also [57].

References

  1. Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., Nolfi, S.: Self-organised coordinated motion in groups of physically connected robots. IEEE Trans. Syst. Man Cybern. Part B 37(1), 224–239 (2007)

    Article  Google Scholar 

  2. Bauer, F., Pereverzev, S., Rosasco, L.: On regularization algorithms in learning theory. J. Complex. 23, 52–72 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially inhomogeneous robot swarms with application to commercial pollination. In: International Conference on Robotics and Automation, ICRA 2011, pp. 378–385. IEEE Press, Piscataway (2011)

    Google Scholar 

  4. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. Springer, Germany (2009)

    Book  MATH  Google Scholar 

  5. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling. Science 314(5802), 1118–1121 (2006)

    Article  Google Scholar 

  6. Bongard, J.C.: Evolutionary robotics. Commun. ACM 56(8), 74–83 (2013)

    Article  Google Scholar 

  7. Brambilla, M., Brutschy, A., Dorigo, M., Birattari, M.: Property-driven design for swarm robotics: a design method based on prescriptive modeling and model checking. ACM Trans. Auton. Adapt. Syst. 9(4), 17.1–17.28 (2015)

    Google Scholar 

  8. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  9. Brooks, R.A.: Artificial life and real robots. In: Varela, F.J., Bourgine, P. (eds.) Toward a Practice of Autonomous Systems. Proceedings of the First European Conference on Artificial Life, pp. 3–10. MIT Press, Cambridge (1992)

    Google Scholar 

  10. Caruana, R., Lawrence, S., Giles, L.: Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. In: Leen, T., Dietterich, T., Tresp, V. (eds.) Advances in Neural Information Processing Systems 13, NIPS 2000, pp. 402–408. MIT Press (2001)

    Google Scholar 

  11. Christensen, A.L., Dorigo, M.: Evolving an integrated phototaxis and hole-avoidance behavior for a swarm-bot. In: Artificial Life, ALIFE 2006, pp. 248–254. MIT Press, Cambridge (2006)

    Google Scholar 

  12. Cybenko, G.: Approximations by superpositions of a sigmoidal function. Math. Control Signals Syst. 2(4), 303–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dietterich, T., Kong, E.B.: Machine learning bias, statistical bias, and statistical variance of decision tree algorithms. Technical report, Department of Computer Science, Oregon State University (1995)

    Google Scholar 

  14. Doncieux, S., Mouret, J.B.: Beyond black-box optimization: a review of selective pressures for evolutionary robotics. Evol. Intell. 7(2), 71–93 (2014)

    Article  Google Scholar 

  15. Duarte, M., Oliveira, S.M., Christensen, A.L.: Evolution of hierarchical controllers for multirobot systems. In: Artificial Life, ALIFE 2014, pp. 657–664. MIT Press, Cambridge (2014)

    Google Scholar 

  16. Duarte, M., Oliveira, S.M., Christensen, A.L.: Hybrid control for large swarms of aquatic drones. In: Artificial Life, ALIFE 2014, pp. 785–792. MIT Press, Cambridge (2014)

    Google Scholar 

  17. Duarte, M., Costa, V., Gomes, J.C., Rodrigues, T., Silva, F., Oliveira, S.M., Christensen, A.L.: Evolution of collective behaviors for a real swarm of aquatic surface robots. arXiv-CoRR abs/1511.03154 (2015)

    Google Scholar 

  18. Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Siciliano, B., Khatib, O. (eds.) Handbook of Robotics, pp. 1423–1451. Springer, Germany (2008)

    Chapter  Google Scholar 

  19. Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and challenges. Front. Robot. AI 3(29), 1–9 (2016)

    Google Scholar 

  20. Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., Mascia, F., Trianni, V., Birattari, M.: AutoMoDe-Chocolate: automatic design of control software for robot swarms. Swarm Intell. 9(2/3), 125–152 (2015)

    Article  Google Scholar 

  21. Francesca, G., et al.: An experiment in automatic design of robot swarms. In: Dorigo, M., Birattari, M., Garnier, S., Hamann, H., Montes de Oca, M., Solnon, C., Stützle, T. (eds.) ANTS 2014. LNCS, vol. 8667, pp. 25–37. Springer, Heidelberg (2014)

    Google Scholar 

  22. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe: a novel approach to the automatic design of control software for robot swarms. Swarm Intell. 8(2), 89–112 (2014)

    Article  Google Scholar 

  23. Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., Birattari, M.: Software infrastructure for e-puck (and TAM). Technical report 2015–004, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2015)

    Google Scholar 

  24. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Self-organized aggregation without computation. Int. J. Robot. Res. 33(8), 1145–1161 (2014)

    Article  Google Scholar 

  25. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Clustering objects with robots that do not compute. In: Lomuscio, A., et al. (eds.) Autonomous Agents and Multiagent Systems, AAMAS 2014, pp. 421–428. IFAAMAS, Richland (2014)

    Google Scholar 

  26. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Comput. 4(1), 1–58 (1992)

    Article  Google Scholar 

  27. Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Magdalena, L.: Open e-puck range & bearing miniaturized board for local communication in swarm robotics. In: International Conference on Robotics and Automation, ICRA 2009, pp. 3111–3116. IEEE Press, Piscataway (2009)

    Google Scholar 

  28. Hamann, H., Wörn, H.: A framework of space-time continuous models for algorithm design in swarm robotics. Swarm Intell. 2(2), 209–239 (2008)

    Article  Google Scholar 

  29. Hecker, J.P., Letendre, K., Stolleis, K., Washington, D., Moses, M.E.: Formica ex machina: ant swarm foraging from physical to virtual and back again. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 252–259. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  30. Jacobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., et al. (eds.) Advances in Artificial Life. LNCS (LNAI), vol. 929, pp. 704–720. Springer, London (1995)

    Chapter  Google Scholar 

  31. Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis. Adapt. Behav. 6(2), 325–368 (1997)

    Article  Google Scholar 

  32. Kazadi, S., Lee, J.R., Lee, J.: Model independence in swarm robotics. Int. J. Intell. Comput. Cybern. 2(4), 672–694 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Koos, S., Mouret, J., Doncieux, S.: The transferability approach: crossing the reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17(1), 122–145 (2013)

    Article  Google Scholar 

  34. Lopes, Y.K., Trenkwalder, S.M., Leal, A.B., Dodd, T.J., Groß, R.: Supervisory control theory applied to swarm robotics. Swarm Intell. 10(1), 65–97 (2016)

    Article  Google Scholar 

  35. McCulloch, W., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  36. Miglino, O., Lund, H.H., Nolfi, S.: Evolving mobile robots in simulated and real environments. Artif. Life 2(4), 417–434 (1995)

    Article  Google Scholar 

  37. Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry. MIT Press, Cambridge (1969)

    MATH  Google Scholar 

  38. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In: 9th Conference on Autonomous Robot Systems and Competitions, pp. 59–65. Instituto Politécnico de Castelo Branco, Portugal (2009)

    Google Scholar 

  39. Morgan, N., Bourlard, H.: Generalization and parameter estimation in feedforward nets: some experiments. In: Touretzky, D. (ed.) Advances in Neural Information Processing Systems 2, NIPS 1990, pp. 630–637. Morgan Kaufman, San Mateo (1990)

    Google Scholar 

  40. Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Cambridge (2000)

    Google Scholar 

  41. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L.M., Dorigo, M.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012)

    Article  Google Scholar 

  42. Prechelt, L.: Early stopping-but when? In: Orr, G.B., Müller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 55–59. Springer, Heidelberg (1998)

    Google Scholar 

  43. Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors. Philos. Trans. Royal Soc. London A Math. Phys. Eng. Sci. 361(1811), 2321–2343 (2003)

    Article  MathSciNet  Google Scholar 

  44. Raskutti, G., Wainwright, M.J., Yu, B.: Early stopping and non-parametric regression: an optimal data-dependent stopping rule. J. Mach. Learn. Res. 15, 335–366 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: a design pattern for decentralised decision making. PLoS ONE 10(10), e0140950 (2015)

    Article  Google Scholar 

  46. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386–408 (1958)

    Article  MathSciNet  Google Scholar 

  47. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  48. Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open issues in evolutionary robotics. Evol. Comput. (2016, in press)

    Google Scholar 

  49. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. Royal Stat. Soc. Ser. B (Methodol.) 36(2), 111–147 (1974)

    MathSciNet  MATH  Google Scholar 

  50. Stranieri, A., Turgut, A., Salvaro, M., Garattoni, L., Francesca, G., Reina, A., Dorigo, M., Birattari, M.: IRIDIA’s arena tracking system. Technical report 2013–013, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2013)

    Google Scholar 

  51. Trianni, V., Nolfi, S.: Self-organising sync in a robotic swarm. A dynamical system view. IEEE Trans. Evol. Comput. 13(4), 722–741 (2009)

    Article  Google Scholar 

  52. Trianni, V.: Evolutionary Swarm Robotics. Springer, Germany (2008)

    Book  Google Scholar 

  53. Trianni, V.: Evolutionary robotics: model or design? Front. Robot. AI 1(13), 1–6 (2014)

    Google Scholar 

  54. Waibel, M., Keller, L., Floreano, D.: Genetic team composition and level of selection in the evolution of cooperation. IEEE Trans. Evol. Comput. 13(3), 648–660 (2009)

    Article  Google Scholar 

  55. Werbos, P.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. thesis, Harvard University, Cambridge (1974)

    Google Scholar 

  56. Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-inspired robot construction team. Science 343(6172), 754–758 (2014)

    Article  Google Scholar 

  57. Wolpert, D.: On bias plus variance. Neural Comput. 9(6), 1211–1243 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

Mauro Birattari acknowledges support from the Belgian F.R.S.–FNRS, of which he is a Senior Research Associate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Birattari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Birattari, M., Delhaisse, B., Francesca, G., Kerdoncuff, Y. (2016). Observing the Effects of Overdesign in the Automatic Design of Control Software for Robot Swarms. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2016. Lecture Notes in Computer Science(), vol 9882. Springer, Cham. https://doi.org/10.1007/978-3-319-44427-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44427-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44426-0

  • Online ISBN: 978-3-319-44427-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics