Skip to main content

Population Coding: A New Design Paradigm for Embodied Distributed Systems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9882))

Abstract

Designing embodied distributed systems, such as multi-robot systems, is challenging especially if the individual components have limited capabilities due to hardware restrictions. In self-organizing systems each component has only limited information and a global, organized system behavior (macro-level) has to emerge from local interactions only (micro-level). A general, structured design approach to self-organizing distributed systems is still lacking. We develop a general approach based on behaviorally heterogeneous systems. Inspired by the concept of population coding from neuroscience, we show in two case studies how designing an embodied distributed system is reduced to picking the right components from a predefined set of controller types. In this way, the design challenge is reduced to an optimization problem that can be solved by a variety of optimization techniques. Our approach is applicable to scenarios that allow for representing the component behavior as (probabilistic) finite state machine. We anticipate the paradigm of population coding to be applicable to a wide range of distributed systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We use an implementation for the R project “NMOF: Numerical Methods and Optimization in Finance” (‘NMOF’) by Enrico Schumann, see http://cran.r-project.org/web/packages/NMOF/.

References

  1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T., Nagpal, R., Rauch, E., Sussman, G., Weiss, R.: Amorphous computing. Commun. ACM 43(5), 74–82 (2000)

    Article  Google Scholar 

  2. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate: languages for spatial computing. In: Formal and Practical Aspects of Domain-Specific Languages, pp. 436–501. Information Science Reference (2012)

    Google Scholar 

  3. Beckers, R., Holland, O.E., Deneubourg, J.L.: From local actions to global tasks: stigmergy and collective robotics. Artif. Life 4, 181–189 (1994)

    Google Scholar 

  4. Berman, S., Halasz, A., Hsieh, M., Kumar, V.: Optimized stochastic policies for task allocation in swarms of robots. IEEE Trans. Robot. 25(4), 927–937 (2009)

    Article  Google Scholar 

  5. Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., Dorigo, M.: Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Auton. Agents Multi-Agent Syst. 28(1), 101–125 (2014)

    Article  Google Scholar 

  6. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463 (2014)

    Article  Google Scholar 

  7. Dorigo, M., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot. Autom. Mag. 20, 60–71 (2013)

    Article  Google Scholar 

  8. Dressler, F.: Self-organization in Sensor and Actor Networks. Wiley, New York (2008)

    Google Scholar 

  9. Ferrante, E., Turgut, A.E., Duez-Guzmn, E., Dorigo, M., Wenseleers, T.: Evolution of self-organized task specialization in robot swarms. PLoS Comput. Biol. 11(8), 1–21 (2015)

    Article  Google Scholar 

  10. Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E.: Neuronal population coding of movement direction. Science 233(4771), 1416–1419 (1986)

    Article  Google Scholar 

  11. Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 23(9), 939–954 (2004)

    Article  Google Scholar 

  12. Hamann, H.: Towards swarm calculus: Urn models of collective decisions and universal properties of swarm performance. Swarm Intell. 7(2–3), 145–172 (2013)

    Article  Google Scholar 

  13. Hamann, H., Valentini, G., Khaluf, Y., Dorigo, M.: Derivation of a micro-macro link for collective decision-making systems. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 181–190. Springer, Heidelberg (2014)

    Google Scholar 

  14. Hamann, H., Wörn, H.: A framework of space-time continuous models for algorithm design in swarm robotics. Swarm Intell. 2(2–4), 209–239 (2008)

    Article  Google Scholar 

  15. Hogg, T.: Coordinating microscopic robots in viscous fluids. Auton. Agents Multi-Agent Syst. 14(3), 271–305 (2006)

    Article  MathSciNet  Google Scholar 

  16. Kengyel, D., Hamann, H., Zahadat, P., Radspieler, G., Wotawa, F., Schmickl, T.: Potential of heterogeneity in collective behaviors: a case study on heterogeneous swarms. In: Chen, Q., Torroni, P., Villata, S., Hsu, J. (eds.) PRIMA 2015. LNCS, vol. 9387, pp. 201–217. Springer, Heidelberg (2015)

    Google Scholar 

  17. Lenaghan, S., Wang, Y., Xi, N., Fukuda, T., Tarn, T., Hamel, W., Zhang, M.: Grand challenges in bioengineered nanorobotics for cancer therapy. IEEE Trans. Biomed. Eng. 60(3), 667–673 (2013)

    Article  Google Scholar 

  18. Pouget, A., Dayan, P., Zemel, R.: Information processing with population codes. Nat. Rev. Neurosci. 1, 125–132 (2000)

    Article  Google Scholar 

  19. Prorok, A., Hsieh, M.A., Kumar, V.: Fast redistribution of a swarm of heterogeneous robots. In: International Conference on Bio-inspired Information and Communications Technologies (BICT) (2015)

    Google Scholar 

  20. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100 Kilobots: speed versus accuracy in binary discrimination problems. Auton. Agents Multi-Agent Syst. 30(3), 553–580 (2015)

    Article  Google Scholar 

  21. Valentini, G., Hamann, H., Dorigo, M.: Global-to-local design for self-organized task allocation in swarms. Technical report TR/IRIDIA/2016-002, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium, March 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heiko Hamann or Marco Dorigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hamann, H., Valentini, G., Dorigo, M. (2016). Population Coding: A New Design Paradigm for Embodied Distributed Systems. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2016. Lecture Notes in Computer Science(), vol 9882. Springer, Cham. https://doi.org/10.1007/978-3-319-44427-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44427-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44426-0

  • Online ISBN: 978-3-319-44427-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics