Abstract
This paper presents an overview of the ImageCLEF 2016 evaluation campaign, an event that was organized as part of the CLEF (Conference and Labs of the Evaluation Forum) labs 2016. ImageCLEF is an ongoing initiative that promotes the evaluation of technologies for annotation, indexing and retrieval for providing information access to collections of images in various usage scenarios and domains. In 2016, the 14th edition of ImageCLEF, three main tasks were proposed: (1) identification, multi-label classification and separation of compound figures from biomedical literature; (2) automatic annotation of general web images; and (3) retrieval from collections of scanned handwritten documents. The handwritten retrieval task was the only completely novel task this year, although the other two tasks introduced several modifications to keep the proposed tasks challenging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
A second teaser task was actually also introduced, aimed at evaluating systems that identify the GPS coordinates of a text documents topic based on its text and image data. However, we had no participants for this task, and thus will not discuss the second teaser task in this paper.
- 4.
- 5.
- 6.
- 7.
References
Aldavert, D., Rusinol, M., Toledo, R., Llados, J.: Integrating visual and textual cues for query-by-string word spotting. In: 2013 12th International Conference on Document Analysis and Recognition (ICDAR), pp. 511–515, August 2013
Balikas, G., Kosmopoulos, A., Krithara, A., Paliouras, G., Kakadiaris, I.A.: Results of the bioasq tasks of the question answering lab at CLEF 2015. In: Working Notes of CLEF 2015 - Conference and Labs of the Evaluation forum, Toulouse, France, 8–11 September 2015 (2015)
Causer, T., Wallace, V.: Building a volunteer community: results and findings from transcribe Bentham. Digit. Humanit. Q. 6(2) (2012). http://www.digitalhumanities.org/dhq/vol/6/2/000125/000125.html
Denkowski, M., Lavie, A.: Meteor universal: language specific translation evaluation for any target language. In: Proceedings of the EACL 2014 Workshop on Statistical Machine Translation (2014)
Fischer, A., Keller, A., Frinken, V., Bunke, H.: Lexicon-free handwritten word spotting using character HMMs. Pattern Recognit. Lett. 33(7), 934–942 (2012). Special Issue on Awards from (ICPR)
Frinken, V., Fischer, A., Bunke, H.: A novel word spotting algorithm using bidirectional long short-term memory neural networks. In: Schwenker, F., El Gayar, N. (eds.) Artificial Neural Networks in Pattern Recognition. LNCS, vol. 5998, pp. 185–196. Springer, Heidelberg (2010)
Gatos, B., Pratikakis, I.: Segmentation-free word spotting in historical printed documents. In: 10th International Conference on Document Analysis and Recognition (ICDAR 2009), pp. 271–275, July 2009
Gilbert, A., Piras, L., Wang, J., Yan, F., Dellandrea, E., Gaizauskas, R., Villegas, M., Mikolajczyk, K.: Overview of the ImageCLEF 2015 scalable image annotation, localization and sentence generation task. In: CLEF2015 Working Notes, CEUR Workshop Proceedings, CEUR-WS.org, Toulouse, France, 8–11 September 2015 (2015)
Gilbert, A., Piras, L., Wang, J., Yan, F., Ramisa, A., Dellandrea, E., Gaizauskas, R., Villegas, M., Mikolajczyk, K.: Overview of the ImageCLEF 2016 scalable concept image annotation task. In: CLEF2016 Working Notes, CEUR Workshop Proceedings, CEUR-WS.org, Évora, Portugal, 5–8 September 2016 (2016)
Giotis, A., Gerogiannis, D., Nikou, C.: Word spotting in handwritten text using contour-based models. In: 2014 14th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 399–404, September 2014
Goeuriot, L., Kelly, L., Suominen, H., Hanlen, L., Névéol, A., Grouin, C., Palotti, J.R.M., Zuccon, G.: Overview of the CLEF ehealth evaluation lab 2015. In: Experimental IR Meets Multilinguality, Multimodality, and Interaction - 6th International Conference of the CLEF Association, CLEF 2015, Toulouse, France, 8–11 September 2015, Proceedings, pp. 429–443 (2015). doi:10.1007/978-3-319-24027-5_44
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: The IEEE International Conference on Computer Vision (ICCV), December 2015
García Seco de Herrera, A., Kalpathy-Cramer, J., Demner Fushman, D., Antani, S., Müller, H.: Overview of the ImageCLEF 2013 medical tasks. In: Working Notes of CLEF 2013 (Cross Language Evaluation Forum) (2013). http://ceur-ws.org/Vol-1179/CLEF2013wn-ImageCLEF-SecoDeHerreraEt2013b.pdf
García Seco de Herrera, A., Müller, H., Bromuri, S.: Overview of the ImageCLEF 2015 medical classification task. In: Working Notes of CLEF 2015 (Cross Language Evaluation Forum), CEUR Workshop Proceedings, CEUR-WS.org, September 2015
García Seco de Herrera, A., Schaer, R., Bromuri, S., Müller, H.: Overview of the ImageCLEF 2016 medical task. In: CLEF2016 Working Notes, CEUR Workshop Proceedings, CEUR-WS.org, Évora, Portugal, 5–8 September 2016 (2016)
Joly, A., Goëau, H., Glotin, H., Spampinato, C., Bonnet, P., Vellinga, W., Planquè, R., Rauber, A., Palazzo, S., Fisher, B., Müller, H.: LifeCLEF 2015: multimedia life species identification challenges. In: Experimental IR Meets Multilinguality, Multimodality, and Interaction - 6th International Conference of the CLEF Association, CLEF 2015, Toulouse, France, 8–11 September 2015, Proceedings, pp. 462–483 (2015). doi:10.1007/978-3-319-24027-5_46
Kalpathy-Cramer, J., García Seco de Herrera, A., Demner-Fushman, D., Antani, S., Bedrick, S., Müller, H.: Evaluating performance of biomedical image retrieval systems an overview of the medical image retrieval task at ImageCLEF 2004–2014. Comput. Med. Imaging Graph. 39, 55–61 (2015). doi:10.1016/j.compmedimag.2014.03.004
Koitka, S., Friedrich, C.M.: Traditional feature engineering and deep learning approaches at medical classification task of ImageCLEF 2016. In: CLEF2016 Working Notes, CEUR Workshop Proceedings, CEUR-WS.org, Évora, Portugal, 5–8 September 2016 (2016)
Lavrenko, V., Rath, T.M., Manmatha, R.: Holistic word recognition for handwritten historical documents. In: First International Workshop on Document Image Analysis for Libraries, Proceedings, pp. 278–287 (2004)
Müller, H., Clough, P., Deselaers, T., Caputo, B. (eds.): ImageCLEF: Experimental Evaluation in Visual Information Retrieval. The Information Retrieval Series, vol. 32. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15181-1
Müller, H., Kalpathy-Cramer, J., Demner-Fushman, D., Antani, S.: Creating a classification of image types in the medical literature for visual categorization. In: SPIE Medical Imaging (2012)
Pratikakis, I., Zagoris, K., Gatos, B., Louloudis, G., Stamatopoulos, N.: ICFHR 2014 competition on handwritten keyword spotting (H-KWS 2014). In: 2014 14th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 814–819, September 2014
Puigcerver, J., Toselli, A.H., Vidal, E.: ICDAR 2015 competition on keyword spotting for handwritten documents. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 1176–1180, August 2015
Ramisa, A., Yan, F., Moreno-Noguer, F., Mikolajczyk, K.: Breakingnews: article annotation by image and text processing. CoRR abs/1603.07141 (2016). http://arxiv.org/abs/1603.07141
Rodríguez-Serrano, J.A., Perronnin, F.: Handwritten word-spotting using hidden Markov models and universal vocabularies. Pattern Recognit. 42, 2106–2116 (2009)
Sorensen, S., Li, P., Kolagunda, A., Jiang, X., Wang, X., Shatkay, H., Kambhamettu, C.: UDEL CIS working notes in ImageCLEF 2016. In: CLEF2016 Working Notes, CEUR Workshop Proceedings, CEUR-WS.org, Évora, Portugal, 5–8 September 2016 (2016)
Snchez, J.A., Romero, V., Toselli, A.H., Vidal, E.: ICFHR 2014 competition on handwritten text recognition on transcriptorium datasets (HTRTS). In: 2014 14th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 785–790, September 2014
Sánchez, J.A., Toselli, A.H., Romero, V., Vidal, E.: ICDAR 2015 competition HTRtS: Handwritten text recognition on the transcriptorium dataset. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 1166–1170, August 2015
Toselli, A.H., Puigcerver, J., Vidal, E.: Context-aware lattice based filler approach for key word spotting in handwritten documents. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 736–740, August 2015
Tsikrika, T., de Herrera, A.G.S., Müller, H.: Assessing the scholarly impact of ImageCLEF. In: Forner, P., Gonzalo, J., Kekäläinen, J., Lalmas, M., Rijke, M. (eds.) CLEF 2011. LNCS, vol. 6941, pp. 95–106. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23708-9_12
Villegas, M., et al.: General overview of ImageCLEF at the CLEF 2015 labs. In: Mothe, J., et al. (eds.) CLEF 2015. LNCS, vol. 9283, pp. 441–461. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24027-5_45
Villegas, M., Paredes, R.: Overview of the ImageCLEF 2012 scalable web image annotation task. In: Forner, P., Karlgren, J., Womser-Hacker, C. (eds.) CLEF 2012 Evaluation Labs and Workshop, Online Working Notes, Rome, Italy, 17–20 September 2012 (2012). http://ceur-ws.org/Vol-1178/CLEF2012wn-ImageCLEF-VillegasEt2012.pdf
Villegas, M., Paredes, R.: Overview of the ImageCLEF 2014 scalable concept image annotation task. In: CLEF2014 Working Notes, CEUR Workshop Proceedings, vol. 1180, pp. 308–328, CEUR-WS.org, Sheffield, UK, 15–18 September 2014 (2014). http://ceur-ws.org/Vol-1180/CLEF2014wn-Image-VillegasEt2014.pdf
Villegas, M., Paredes, R., Thomee, B.: Overview of the ImageCLEF 2013 scalable concept image annotation subtask. In: CLEF 2013 Evaluation Labs and Workshop, Online Working Notes, Valencia, Spain, 23–26 September 2013 (2013). http://ceur-ws.org/Vol-1179/CLEF2013wn-ImageCLEF-VillegasEt2013.pdf
Villegas, M., Puigcerver, J., Toselli, A.H.: ImageCLEF 2016 Bentham handwritten retrieval dataset (2016). doi:10.5281/zenodo.52994
Villegas, M., Puigcerver, J., Toselli, A.H., Sánchez, J.A., Vidal, E.: Overview of the ImageCLEF 2016 handwritten scanned document retrieval task. In: CLEF2016 Working Notes, CEUR Workshop Proceedings, CEUR-WS.org, Evora, Portugal, 5–8 September 2016 (2016)
Wang, J., Gaizauskas, R.: Generating image descriptions with gold standard visual inputs: motivation, evaluation and baselines. In: Proceedings of the 15th European Workshop on Natural Language Generation (ENLG), pp. 117–126. Association for Computational Linguistics, Brighton, UK (2015). http://www.aclweb.org/anthology/W15-4722
Zagoris, K., Ergina, K., Papamarkos, N.: Image retrieval systems based on compact shape descriptor and relevance feedback information. J. Vis. Commun. Image Represent. 22(5), 378–390 (2011)
Acknowledgements
The general coordination and the handwritten retrieval task have been supported by the European Union (EU) Horizon 2020 grant READ (Recognition and Enrichment of Archival Documents) (Ref: 674943), EU project HIMANIS (JPICH programme, Spanish grant Ref: PCIN-2015-068) and MINECO/FEDER, UE under project TIN2015-70924-C2-1-R. The image annotation task is co-organized by the VisualSense (ViSen) consortium under the ERA-NET CHIST-ERA D2K 2011 Programme, jointly supported by UK EPSRC Grants EP/K01904X/1 and EP/K019082/1, French ANR Grant ANR-12-CHRI-0002-04 and Spanish MINECO Grant PCIN-2013-047. This research was supported in part by the Intramural Research Program of the National Institutes of Health (NIH), National Library of Medicine (NLM), and Lister Hill National Center for Biomedical Communications (LHNCBC).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Villegas, M. et al. (2016). General Overview of ImageCLEF at the CLEF 2016 Labs. In: Fuhr, N., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2016. Lecture Notes in Computer Science(), vol 9822. Springer, Cham. https://doi.org/10.1007/978-3-319-44564-9_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-44564-9_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44563-2
Online ISBN: 978-3-319-44564-9
eBook Packages: Computer ScienceComputer Science (R0)