
Online Multi-Label Classification with Adaptive
Model Rules

Ricardo Sousa1 and João Gama1,2

1 LIAAD/INESC TEC, Universidade do Porto, Portugal
rtsousa@inesctec.pt

2 Faculdade de Economia, Universidade do Porto, Portugal
jgama@fep.up.pt

Abstract. The interest on online classification has been increasing due
to data streams systems growth and the need for Multi-Label Classifica-
tion applications have followed the same trend. However, most of classi-
fication methods are not performed on-line. Moreover, data streams pro-
duce huge amounts of data and the available processing resources may
not be sufficient. This work-in-progress paper proposes an algorithm for
Multi-Label Classification applications in data streams scenarios. The
proposed method is derived from multi-target structured regressor AM-
Rules that produces models using subsets of output attributes(output
specialization strategy). Performance tests were conducted where the
operation modes global, local and subset approaches of the proposed
method were compared to each other and to others online multi-label
classifiers described in the literature. Three datasets of real scenarios
were used for evaluation. The results indicate that the subset specializa-
tion mode is competitive in comparison to local and global approaches
and to other online multi-label classifiers.

Keywords: Multi− Label · Classification ·AMRules ·DataStreams

1 Introduction

Nowadays, data streams systems are very common (sensors systems, network
monitoring logs, video streams, ...) [1]. These systems produce data unlimit-
edly in real time at high rates. Collected data can not be all stored and pro-
cessed in just one procedure but one example at a time. Moreover, the data may
present changes over time [2]. Therefore, systems such as regressors and clas-
sifiers need to perform training and prediction operations dynamically through
online systems [3]. Some classification problems require that more than one class
label should be assigned to an example. Two different examples may have a dif-
ferent number of class labels assigned [4]. The process that tries to solve this
problem is called Multi-Label Classification(MLC) [2]. Formally, representing
D = {..., (x1,y1), (x2,y2), ..., (xi,yi), ...} as an unbounded data stream, where
xi = [xi,1 · · ·xi,j · · ·xi,M] is a M -dimensional vector containing the data descrip-
tive variables xi,j (input attributes) of the ith example (considering an example

as a reference) and yi corresponds to the response (output attributes) that con-
sists of subset of nominal labels λk such that yi ⊆ {λ1, ..., λk, ..., λL}, where L
is the number of possible labels. The objective of MLC is to learn a function
f(xi) → yi that maps the input values of xi into the output values of yi. On-
line MLC is used in several domains such as Biology(gene and protein function
classification) [5], Engineering (Network Monitoring and sensor applications) [6],
Economics (online stock market data) [7], Social Sciences (social networks evolu-
tion) [8], Library and Information Science (text categorization) [7] and Multime-
dia (image, video and music categorization and annotation) [4]. Among classifica-
tion techniques, structured classifiers present the advantage of selecting the most
discriminative features implicitly, without requiring variables scaling. Moreover,
these classifiers are resilient to outliers and the produced models are easily inter-
preted [8]. From structured classifiers, Rules Learning algorithms presents high
modularity due to the fact that each rule can be interpreted individually [9]. The
rule learning is independent which is an advantage when compared to tree-based
algorithms. Modularity of rule sets can be explored to overcome the global and
local methods thought rule specialization on a subset of output variables [10].
This work suggests a solution for MLC on data streams based on the algorithm
AMRules and inspired on a regression approach [10]. This method was eval-
uated through a comparison of performance measures against other methods
found in the literature. In addiction, the local and global operation mode were
also compared to the subset approach. This paper presents the following struc-
ture. Section 2 summarizes related work(small presentation of online multi-label
classifiers found in literature) and Section 3 describes the proposed rule-based
algorithm for online MLC. The performance tests are described in Section 4. The
results are discussed on Section 5 and the conclusions are remarked in Section
6.

2 Related work

In this section, some existing online MLC approaches are briefly described. Typ-
ically, most approaches are based on problem transformation [8]. The output set
of labels yi are transformed into a vector of outputs variables [yi,1 · · · yi,k · · · yi,L],
where yi,k ∈ {0, 1} are binary. If label λk is assigned to the ith example then
yi,k = 1, otherwise yi,k = 0. Here, the outputs variables are redefined as yi =
[yi,1 · · · yi,k · · · yi,L]. The Binary Relevance (BR) is a simple multi-label classifier
that uses directly the problem transformation. An online binary classifier trains
and predicts for the kth output variable only. The prediction procedure is repre-
sented by ŷi = [f1(xi), ..., fk(xi), ..., fL(xi)], where fk represent the classifier of
the kth output variable. This classifier is used as a baseline in the performance
tests. Classifier Chains (CC) also uses the problem transformation like the BR
method [11]. The L outputs variables indexes are shuffled in a sequence. Then,
a classifier k is used to model the inputs and the first (k − 1) outputs variables.
The prediction can be expressed as ŷi = [f1(xi), ..., fk(xi, ŷi,1, ..., ŷi,k−1), ...,
fL(xi, ŷi,1, ..., ŷi,L−1)] (posteriorly reordered as before shuffling). Multi-Label

Hoeffding Trees (MHT) is an online structured classifier based on a decision
tree that uses the Hoeffding bound criterion in the induction. The algorithm
uses the information gain in the split decision and multi-label classifiers at the
tree leaves [2]. The process can be modelled as ŷi = fn(xi), where fn is a basic
online multi-label classifier of n leaf.

3 Multi-Label AMRules for Classification

In this section, Multi-Label AMRules (ML-AMRules) algorithm and its under-
lying principles are presented. As main principle, this algorithm is based on
the adaptation of the multi-target AMRules regressor to the MLC problem
through problem transformation [10]. This section also presents the underlying
Rule Learning theory, the description of ML-AMRules training and prediction
(multi-target adaptation to the MLC problem) and the description of the local
and global modes.

3.1 Rule Learning

Rule R is defined as A ⇒ C implication where the antecedent A is a conjunction
of conditions (called literals) of the input variables xi, and the consequent C is a
predicting function (in this context, it is a basic online multi-label classifier). For
numerical data, literals may present the forms (Xj ≤ v) and (Xj > v), where
Xj represents the jth input variable, meaning that xi,j must be less or equal
to v, and xi,j must be greater than v, respectively. Regarding nominal data,
literals may present forms (Xj = v) expressing that xi,j must be equal to v or
(Xj 6= v) indicating that xi,j must be different than v. R is said to cover xi if,
and only if, xi satisfies all the literals in A. The support of the input variables
of an example, S(xi), corresponds to a set of rules that cover xi. Function (the
basic classifier) in C returns a prediction ŷi if a rule Rr covers the example
input variables xi. Data structure Lr containing the necessary statistics(about
the rule and the examples) to the algorithm training and prediction (expand the
rule, detect changes and identify anomalies,...) is associated to each rule Rr. A
particular rule D, called default rule, exists for initial conditions and for the case
of none of the current rules covers the example (S(xi) = ∅). The antecedent of
D and its statistics LD start as an empty set. Rule set is formed by a set of
U learned rules defined as R = {R1, · · · , Rr, · · · , RU} and a default rule D as
depicted in Figure 1. In summary, Rule Learning allows to create partitions on
the input variables space and build a model on each partition. Consequently, the
linear model can fit more easily to data.

3.2 ML-AMRules Training(Rule Induction)

Algorithm 1 illustrates the pseudo-code for the ML-AMRules training. The al-
gorithm initializes the statistics LD of the default rule and starts the rule set R
out empty. When an example (xi,yi) is received, the algorithm searches for rules

D
e
f
a
u
l
t

Rule 1 Rule 2 Rule r...

...

Y1 Y2 Y3{ }, ,

y1 y3{ }, y2 y3{ }, y1{ } y1 y2 y3{ }, ,

Fig. 1. Multi-Label AMRules based on subsets specialization.

that covers the example input variables xi. Considering one rule Rr ∈ S(xi), the
example input variables xi are submitted to anomaly (isAnomaly(Lr,xi)) and
change (changeDetected(Lr,xi)) detection in order to prune the examples. For
change detection, the Page-Hinkley (PH) is used [12]. For anomaly detection,
a method based on probability of example occurrence was used [10]. In case of
anomaly, the example is simply rejected and in case of change detection, Rr is
removed from the rule set(the rule is outdated). Otherwise, the statistics Lr are
updated(update(Lr)).

Rule expansion (addition of new literal) is attempted and in an affirmative
case(expand(Rr)), specialization of the rule on the output subset and rule addic-
tion to R are performed (Section 3.4). This specialization leads to more accurate
predictions and it increases the speed of processing. The example input variables
xi may not be covered by any rule. Consequently, the statistics of the default
rule LD are updated and the expansion is attempted. If an expansion occur, the
default rule D is added to the rule set R and a new default rule is initialized.
The training process also involves the computation of a weight parameter for
the case of more than one rule covers the example, in the prediction operations.
The parameter is the mean error with a fading factor, for the rule r and output
variable k, er,k =

Tr,k

Wr
. Tr,k is the accumulated error and Wr is the number

of examples observed since the last expansion, both affected by a fading factor
0 < α < 1 . These parameters are computed as

Tr,k ← αTr,k + |ŷi,k − yi,k|, Wr ← αWr + 1, (1)

where and yi,k is the true value and ŷi,k is post-training prediction. Each output
variable under the rule Rr is associated to a linear and to an output mean
predictors. The output-mean predictor is simply defined as ŷri,k = 1

n

∑n
u=1 yu,k,

where n is the number of examples seen since last expansion. The purpose is to
allow fast training convergence of the linear predictor. The error er,k is computed
for each predictor.

3.3 Rule Expansion

Rule Rr expansion consists of adding a new literal to the antecedent Ar. The
new literal is determined by finding the input variables and by computing the

Algorithm 1 Adaptive Model Rules training

1: R← ∅, D ← 0
2: for all (xi,yi) ∈ D do
3: for all Rr ∈ S(xi) do
4: if ¬isAnomaly(Lr,xi) then
5: if changeDetected(Lr,xi) then
6: R← R \ {Rr}
7: else
8: Rc ← Rr

9: update(Lr)
10: expanded← expand(Rr)
11: if expanded = TRUE then
12: Compute O′

c

13: Oc ← O′
c

14: R← R∪ {Rc}
15: if S(xi) = ∅ then
16: update(LD)
17: expanded← expand(D)
18: if expanded = TRUE then
19: R← R∪ {D}
20: D ← 0

split-points that maximize the uniformity of two groups of values, divided by v.
This procedure uses an Extended Binary Search Tree(E-BST) with limited depth
that keeps data statistics [13]. Mean Information Gain(MIG) is the maximizing
function for splitting an input Xj given the split-point v with respect to the
output variables. MIG is defined as

MIG(Xj , v) =
1

|Or|
∑
u∈Or

IGu(Xj , v), (2)

where IGu(Xj , v) is the Information Gain of splitting Xj given v considering
the output variable Yu, and Or is the set of output variables indexes currently
being considered by the rule Rr. The Information Gain(IG) is defined as

IGu(Xj , v) = Hu(E)− |EL|
|E|

Hu(EL)

Hu(E)
− |ER|
|E|

Hu(ER)

Hu(E)
, (3)

where,

Hu(E) = −[p log(p) + (1− p) log(1− p)],

is the entropy, p is the probability of Yu = 1 and E denotes the set of examples
processed since the last expansion. If the input variables are numerical, EL =
{xi ∈ E : xi,j ≤ v} and ER = {xi ∈ E : xi,j > v}. Considering nominal input
variables, EL = {xi ∈ E : xi,j = v} and ER = {xi ∈ E : xi,j 6= v}. The rule
expansion procedure uses the Hoeffding bound [14] to determine the minimum

number of examples n required to expand, which states that the true mean of a
random variable β, with range P , will not differ from the sample mean more than

ε with probability 1−δ. The Hoeffding bound is defined as ε =
√

P 2 ln (1/δ)
2n . This

procedure suggests several candidates for splitting [MIG(Xj , v1)...MIG(Xj , vc)]
that are organized in decreasing order. A comparison between the two best splits
is performed using the difference: β = MIG(Xj , v1)−MIG(Xj , v2). The range
of β is [0, 1], therefore P = 1. In case of β > ε, MIG(Xj , v1) is the best split
with the probability of 1 − δ. Threshold τ is defined to limit ε for numerical
instabilities. If ε < τ is met, the split with higher MIG(Xj , v1) is selected and
the expansion takes place. The relation sign is determine by finding the set of
example(EL or ER) with the lowest H(E). This incremental algorithm presents
O(n) complexity which makes it suitable for online scenarios.

3.4 Specializing on subsets of the output variables

Let Or, Ebest be the set of the current learning outputs indexes for rule Rr
and the set of examples with the lowest H(E) in the splitting, respectively. O′r
denotes the new learning outputs that consists of set of output variables indexes
that reduce in entropy after the split:

O′r =

{
u : u ∈ Or ∧

Hu(Ebest)

Hu(E)
< 1

}
. (4)

A complementary rule Rc which contains the set of the pruned output vari-
ables is also added to the rule set in order to keep their information. The an-
tecedents of Rc and Rr are equal before the expansion. Rc learns only from the
output attributes Yu ∈ O′c in order to satisfy O′c = Or \ O′r.

3.5 ML-AMRules Prediction

In the prediction, the rules Rr that covers the example are considered Λ = {r :
Rr ∈ S(xi)}. The next step consists of choosing the predictor that presents lower
error (the output-mean or linear predictor) to retrieve an estimation ŷri,k for the
output k. The final prediction is defined as

ŷi,k =

{
1 if mi,k > 0.5

0 if mi,k ≤ 0.5
(5)

mi,k =
∑
u∈Λ

θu,kŷ
u
i,k, θu,k =

(eu,k + ε)−1∑
t∈Λ

(et,k + ε)−1
, (6)

where ε is a small positive number used to prevent numerical instabilities. If the
output attribute Yu can not be predicted by any rule, the prediction is given by
the default rule D.

3.6 Local and Global approaches

Two ML-AMRules operation modes are presented in this subsection according
to local and global methods. The local approach is based on an instantiation
of the ML-AMRules for each output variable. This operation mode resembles
the BR approach. Each output variable has an independent rule set that models
it. The final prediction is produced by combining the individual predictions.
Considering the global approach, the rules are learned and predicted for all
output attributes using one instantiation. For implementing the global algorithm
the rule specialization is not performed (steps 11 and 12 in Algorithm 1).

4 Experimental Setup

This section presents the evaluation tests of the proposed algorithm described
in Section 3. The proposed algorithm is compared to three online multi-label
algorithms described in Section 2 in terms of their performance. The same com-
parison was performed for local and global operations mode described in Subsec-
tion 3.6. The algorithm CC is incorporated in the open source MEKA platform
that includes both batch and online multi-label algorithms. The algorithms were
implemented in JAVA programming language and are based on WEKA [2]. BR,
MHT and the proposed methods ML-AMRules were implemented in the Mas-
sive Online Analysis (MOA) platform. Its an open source platform of Machine
Learning and Data Mining algorithms applied to data streams. This platform
was also implemented in JAVA programming language. Real scenarios datasets
20NG, mediamill and OHSUMED were used to simulate data streams. These
datasets are described on literature [8] and some features are presented in Table
1.

Table 1. Dataset description

Dataset #Examples #Outputs #Inputs

20NG-F 19300 20 1006
mediamill 43907 101 120
OHSUMED-F 13929 23 1002

The examples of the datasets were replicated four times and shuffled due
to the need of a significant number of examples by these algorithms. Perfor-
mance example-based measures, Exact Match, Accuracy, Precision, Recall and
F-measure were used [15]. This evaluation used the prequential mode where the
algorithm starts by predicting the output values and the example-based mea-
sures. Posteriorly, it uses the example for training [16]. Datasets examples were
divided into 100 windows and the above mentioned measures were computed
for each window. Finally, the mean and the standard deviation of the measures
of all windows were computed. Perceptron with a logistic activation function

was used as linear predictor by all algorithms due to its models simplicity, low
computational cost and low error rates [17].

5 Results

In this section, the evaluation results are presented. The results are organized
by performance measures. Tables 2 to 6 present the Accuracy, Exact Match,
Precision, Recall and F-measure results of the online multi-label algorithms for
each dataset. The ML-AMR(S), ML-AMR(G) and ML-AMR(L) correspond to
the subset, global and local ML-AMRules operation modes, respectively.

Table 2. Accuracy. Mean and standard deviation values.

Dataset ML-AMR(S) ML-AMR(G) ML-AMR(L) BR MHT CC

20NG 0.65±0.07 0.67±0.07 0.63±0.06 0.65±0.07 0.66±0.07 0.64±0.05
mediamill 0.37±0.01 0.35±0.01 0.35±0.01 0.34±0.01 0.35±0.01 0.34±0.01
OSHUMED 0.46±0.06 0.46±0.06 0.44±0.05 0.47±0.06 0.47±0.06 0.44±0.05

Table 2 shows that the ML-AMRules approaches present values that have
competitive accuracy. Among ML-AMRules approaches, the subset and global
approaches seem to stand out.

Table 3. Exact Match. Mean and standard deviation values.

Dataset ML-AMR(S) ML-AMR(G) ML-AMR(L) BR MHT CC

20NG 0.62±0.06 0.65±0.07 0.61±0.06 0.64±0.07 0.64±0.07 0.62±0.06
mediamill 0.04±0.01 0.04±0.01 0.04±0.00 0.04±0.01 0.04±0.01 0.04±0.01
OSHUMED 0.30±0.04 0.30±0.05 0.29±0.04 0.31±0.04 0.31±0.05 0.30±0.05

Table 3 presents low values for mediamill dataset due to high number of
possibles labels for all algorithms. In this aspect, the ML-AMRules approaches
present lower values in comparison to other algorithm.

Table 4. Precision. Mean and standard deviation values.

Dataset ML-AMR(S) ML-AMR(G) ML-AMR(L) BR MHT CC

20NG 0.68±0.07 0.69±0.07 0.65±0.06 0.69±0.07 0.68±0.07 0.65±0.06
mediamill 0.40±0.02 0.41±0.02 0.41±0.01 0.41±0.01 0.41±0.01 0.40±0.01
OSHUMED 0.50±0.06 0.50±0.06 0.48±0.05 0.51±0.06 0.51±0.06 0.50±0.05

Table 4 displays favourable precision values for ML-AMRules approaches.
Among ML-AMRules modes, global and local present better values.

Table 5. Recall. Mean and standard deviation values.

Dataset ML-AMR(S) ML-AMR(G) ML-AMR(L) BR MHT CC

20NG 0.66±0.07 0.68±0.07 0.64±0.06 0.67±0.07 0.67±0.07 0.65±0.07
mediamill 0.68±0.02 0.67±0.01 0.66±0.01 0.67±0.01 0.67±0.01 0.66±0.01
OSHUMED 0.59±0.06 0.59±0.06 0.57±0.05 0.59±0.06 0.60±0.06 0.58±0.05

Table 5 exhibits predominance of the ML-AMRules approaches. The global
and subset approaches present better performance.

Table 6. F-Measure. Mean and standard deviation values.

Dataset ML-AMR(S) ML-AMR(G) ML-AMR(L) BR MHT CC

20NG 0.66±0.07 0.68±0.07 0.64±0.06 0.67±0.07 0.67±0.07 0.64±0.06
mediamill 0.46±0.01 0.47±0.01 0.47±0.01 0.47±0.01 0.47±0.01 0.46±0.01
OSHUMED 0.51±0.06 0.52±0.06 0.50±0.05 0.50±0.06 0.51±0.06 0.50±0.05

Table 6 reveals the preponderance of the ML-AMRules approaches. The
global and subset approaches present better performance. In general, the mean
values present very close values due to the fact that all algorithms use the same
linear predictor and due to datasets complexity.

6 Conclusions

This paper is the result of a preliminary work suggests a multi-target algorithm
adaptation to the multi-label problems using Rule Learning methods. It can be
concluded that the proposed approach is competitive when compared to online
multi-label algorithms from the literature. The subset approach has shown to be
competitive against local and global approaches. The experiments have shown
that the datasets implicit models should be characterized in order to understand
the data distribution.

7 Acknowledgments

This work was partly supported by the European Commission through MAES-
TRA (ICT-2013-612944) and the Project TEC4Growth - Pervasive Intelligence,
Enhancers and Proofs of Concept with Industrial Impact/NORTE -01-0145-
FEDER-000020 is financed by the North Portugal Regional Operational Pro-
gramme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement,
and through the European Regional Development Fund (ERDF).

References

1. Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard
Gavaldà. New ensemble methods for evolving data streams. In Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’09, pages 139–148, New York, NY, USA, 2009. ACM.

2. Jesse Read, Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. Scalable and
efficient multi-label classification for evolving data streams. Mach. Learn., 88(1-
2):243–272, July 2012.

3. João Gama. Knowledge Discovery from Data Streams. Chapman and Hall / CRC
Data Mining and Knowledge Discovery Series. CRC Press, 2010.

4. Gjorgji Madjarov, Dragi Kocev, Dejan Gjorgjevikj, and SašO Deroski. An extensive
experimental comparison of methods for multi-label learning. Pattern Recogn.,
45(9):3084–3104, September 2012.

5. Amanda Clare and Ross D. King. Knowledge discovery in multi-label phenotype
data. In Proceedings of the 5th European Conference on Principles of Data Min-
ing and Knowledge Discovery, PKDD ’01, pages 42–53, London, UK, UK, 2001.
Springer-Verlag.

6. Charu C. Aggarwal. Data Streams: Models and Algorithms (Advances in Database
Systems). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

7. Xiangnan Kong and Philip S. Yu. An ensemble-based approach to fast classification
of multi-label data streams, pages 95–104. 12 2011.

8. Aljaz Osojnik, Pance Panov, and Saso Dzeroski. Multi-label classification via
multi-target regression on data streams. In Discovery Science - 18th International
Conference, DS 2015, Banff, AB, Canada, October 4-6, 2015, Proceedings, pages
170–185, 2015.

9. Johannes Fürnkranz, Dragan Gamberger, and Nada Lavra. Foundations of Rule
Learning. Springer, 2012.

10. João Duarte and João Gama. Multi-Target Regression from High-Speed Data
Streams with Adaptive Model Rules. In IEEE conference on Data Science and
Advanced Analytics, 2015.

11. Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains
for multi-label classification. In Proceedings of the European Conference on Ma-
chine Learning and Knowledge Discovery in Databases: Part II, ECML PKDD ’09,
pages 254–269, Berlin, Heidelberg, 2009. Springer-Verlag.

12. E. S. Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.
13. Elena Ikonomovska, João Gama, and Saso Dzeroski. Learning model trees from

evolving data streams. Data Min. Knowl. Discov., 23(1):128–168, 2011.
14. Wassily Hoeffding. Probability inequalities for sums of bounded random variables.

Journal of the American Statistical Association, 58(301):13–30, 1963.
15. M. S. Sorower. A literature survey on algorithms for multi-label learning.
16. João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. On evaluating stream

learning algorithms. Machine Learning, 90(3):317–346, 2013.
17. Eneldo Loza Menćıa and Johannes Fürnkranz. Pairwise learning of multilabel clas-

sifications with perceptrons. In Proceedings of the International Joint Conference
on Neural Networks, IJCNN 2008, part of the IEEE World Congress on Com-
putational Intelligence, WCCI 2008, Hong Kong, China, June 1-6, 2008, pages
2899–2906, 2008.

