Skip to main content

Multilayer Spiking Neural Network for Audio Samples Classification Using SpiNNaker

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2016 (ICANN 2016)

Abstract

Audio classification has always been an interesting subject of research inside the neuromorphic engineering field. Tools like Nengo or Brian, and hardware platforms like the SpiNNaker board are rapidly increasing in popularity in the neuromorphic community due to the ease of modelling spiking neural networks with them. In this manuscript a multilayer spiking neural network for audio samples classification using SpiNNaker is presented. The network consists of different leaky integrate-and-fire neuron layers. The connections between them are trained using novel firing rate based algorithms and tested using sets of pure tones with frequencies that range from 130.813 to 1396.91 Hz. The hit rate percentage values are obtained after adding a random noise signal to the original pure tone signal. The results show very good classification results (above 85 % hit rate) for each class when the Signal-to-noise ratio is above 3 decibels, validating the robustness of the network configuration and the training step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128 × 128 120 dB 15 μs latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circ. 43, 566–576 (2008)

    Article  Google Scholar 

  2. Chan, V., Liu, S.C., van Schaik, A.: AER EAR: a matched silicon cochlea pair with address event representation interface. IEEE Trans Circ. Syst. I 54(1), 48–59 (2007)

    Article  Google Scholar 

  3. Häfliger, P.: Adaptive WTA with an analog VLSI neuromorphic learning chip. IEEE Trans. Neural Netw. 18, 551–572 (2007)

    Article  Google Scholar 

  4. Indiveri, G., Chicca, E., Douglas, R.: A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17, 211–221 (2006)

    Article  Google Scholar 

  5. Jiménez-Fernández, A., Jiménez-Moreno, G., Linares-Barranco, A., et al.: Building blocks for spikes signal processing. In: International Joint Conference on Neural Networks, IJCNN (2010)

    Google Scholar 

  6. Linares-Barranco, A., et al.: A USB3.0 FPGA event-based filtering and tracking framework for dynamic vision sensors. In: Proceedings of IEEE International Symposium on Circuits and Systems, pp. 2417–2420 (2015)

    Google Scholar 

  7. Linares-Barranco, A., Gomez-Rodriguez, F., Jimenez-Fernandez, A., et al.: Using FPGA for visuo-motor control with a silicon retina and a humanoid robot. In: IEEE International Symposium on Circuits and Systems, pp. 1192–1195 (2007)

    Google Scholar 

  8. Jimenez-Fernandez, A., Jimenez-Moreno, G., Linares-Barranco, A., et al.: A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs. Sensors 12, 3831–3856 (2012)

    Article  Google Scholar 

  9. Hamilton, T.J., Jin, C., van Schaik, A., Tapson, J.: An active 2-D silicon cochlea. IEEE Trans. Biomed. Circ. Syst. 2, 30–43 (2008)

    Article  Google Scholar 

  10. Jimenez-Fernandez, A., Cerezuela-Escudero, E., Miro-Amarante, L., et al.: A binaural neuromorphic auditory sensor for FPGA: a spike signal processing approach. IEEE Trans. Neural Networks Learn. Syst. 1(0) (2016)

    Google Scholar 

  11. Boahen, K.: Point-to-point connectivity between neuromorphic chips using address events. IEEE Trans. Circ. Syst II Analog Digit Sig. Process. 47, 416–434 (2000)

    Article  MATH  Google Scholar 

  12. Bekolay, T., et al.: Nengo: a Python tool for building large-scale functional brain models. Front Neuroinform. 7, 48 (2014)

    Article  Google Scholar 

  13. Goodman, D., Brette, R.: Brian: a simulator for spiking neural networks in python. Front Neuroinform. 2, 5 (2008)

    Article  Google Scholar 

  14. jAER Open Source Project. http://jaer.wiki.sourceforge.net

  15. Berner, R., Delbruck, T., Civit-Balcells, A., Linares-Barranco, A.: A 5 Meps $100 USB2.0 address-event monitor-sequencer interface. IEEE International Symposium on Circuits and Systems (2007)

    Google Scholar 

  16. Painkras, E., et al.: SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural network simulation. IEEE J. Solid-State Circ. 48, 1943–1953 (2013)

    Article  Google Scholar 

  17. Davison, A.P.: PyNN: a common interface for neuronal network simulators. Front Neuroinform. 2, 11 (2008)

    Article  Google Scholar 

  18. SpiNNaker Home Page. http://apt.cs.manchester.ac.uk/projects/SpiNNaker

  19. Dominguez-Morales, J.P.: Multilayer spiking neural network for audio samples classification using Spinnaker Github page. https://github.com/jpdominguez/Multilayer-SNN-for-audio-samples-classification-using-SpiNNaker

Download references

Acknowledgements

The authors would like to thank the APT Research Group of the University of Manchester for instructing us in the SpiNNaker. This work is supported by the Spanish government grant BIOSENSE (TEC2012-37868-C04-02) and by the excellence project from Andalusian Council MINERVA (P12-TIC-1300), both with support from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pedro Dominguez-Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dominguez-Morales, J.P. et al. (2016). Multilayer Spiking Neural Network for Audio Samples Classification Using SpiNNaker. In: Villa, A., Masulli, P., Pons Rivero, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2016. ICANN 2016. Lecture Notes in Computer Science(), vol 9886. Springer, Cham. https://doi.org/10.1007/978-3-319-44778-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44778-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44777-3

  • Online ISBN: 978-3-319-44778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics