Skip to main content

Striatal Processing of Cortical Neuronal Avalanches – A Computational Investigation

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2016 (ICANN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9886))

Included in the following conference series:

  • 2638 Accesses

Abstract

In the cortex, spontaneous neuronal avalanches can be characterized by spatiotemporal activity clusters with a cluster size distribution that follows a power law with exponent –1.5. Recordings in the striatum revealed that striatal activity was also characterized by spatiotemporal clusters that followed a power law distribution albeit, with significantly steeper slope, i.e., they lacked the large spatial clusters that are commonly expected for avalanche dynamics. In this study, we used computational modeling to investigate the influence of intrastriatal inhibition and corticostriatal interplay as important factors to understand the experimental findings and overall information transmission among these circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beggs, J., Plenz, D.: Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003)

    Google Scholar 

  2. Bak, P.: How Nature Works: The Science of Self-organized Criticality. Copernicus Press, New York (1996)

    Book  MATH  Google Scholar 

  3. Pajevic, S., Plenz, D.: Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches. PLoS Comput. Biol. 5(1), e1000271 (2009)

    Article  MathSciNet  Google Scholar 

  4. Petermann, T., Thiagarajan, T., Lebedev, M., Nicolelis, M., Chialvo, D., Plenz, D.: Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proc. Natl. Acad. Sci. U.S.A. 18, 15921–15926 (2009)

    Article  Google Scholar 

  5. Shew, W., Yang, H., Yu, S., Roy, R., Plenz, D.: Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. J. Neurosci. 31, 55–63 (2011)

    Article  Google Scholar 

  6. Yang, H., Shew, W., Roy, R., Plenz, D.: Maximal variability of phase synchrony in cortical networks with neuronal avalanches. J. Neurosci. 32, 1061–1072 (2012)

    Article  Google Scholar 

  7. Beggs, J., Plenz, D.: Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci. 24, 5216–5229 (2004)

    Article  Google Scholar 

  8. Plenz, D., Thiagarajan, T.: The organizing principles of neuronal avalanches: cell assemblies in the cortex? Trends Neurosci. 30, 101–110 (2007)

    Article  Google Scholar 

  9. Belić, J., Klaus, A., Plenz, D., Hellgren Kotaleski, J.: Mapping of cortical avalanches to the striatum. In: Liljenström, H. (ed.) Advances in Cognitive Neurodynamics, vol. 4, pp. 291–297. Springer, Dordrecht (2015)

    Google Scholar 

  10. Klaus, A., Yu, S., Plenz, D.: Statistical analyses support power law distributions found in neuronal avalanches. PLoS ONE 6, e19779 (2011)

    Article  Google Scholar 

  11. Yu, S., Klaus, A., Yang, H., Plenz, D.: Scale-invariant neuronal avalanche dynamics and the cut-off in size distributions. PLoS ONE 9, e99761 (2014)

    Article  Google Scholar 

  12. Zheng, T., Wilson, J.: Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. J. Neurophysiol. 87, 1007–1017 (2002)

    Google Scholar 

  13. Bar-Gad, I., Havazelet-Heimer, G., Goldberg, A., Ruppin, E., Bergman, H.: Reinforcement-driven dimensionality reduction-a model for information processing in the basal ganglia. J. Basic Clin. Physiol. Pharmacol. 11, 305–320 (2000)

    Article  Google Scholar 

  14. Plenz, D., Kitai, S.: Adaptive classification of cortical input to the striatum by competitive learning. In: Brain Dynamics and the Striatal Complex, pp. 165–177 (2000)

    Google Scholar 

  15. Tepper, J., Koos, T., Wilson, C.: GABAergic microcircuits in the neostriatum. Trends Neurosci. 27, 662–669 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n°604102 (HBP), the Swedish Research Council, NIAAA (grant 2R01AA016022), Swedish e-Science Research Centre, and EuroSPIN – an Erasmus Mundus Joint Doctorate program. The authors are thankful to Andreas Klaus for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jovana J. Belić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Belić, J.J., Hellgren Kotaleski, J. (2016). Striatal Processing of Cortical Neuronal Avalanches – A Computational Investigation. In: Villa, A., Masulli, P., Pons Rivero, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2016. ICANN 2016. Lecture Notes in Computer Science(), vol 9886. Springer, Cham. https://doi.org/10.1007/978-3-319-44778-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44778-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44777-3

  • Online ISBN: 978-3-319-44778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics