Skip to main content

Local Reject Option for Deterministic Multi-class SVM

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2016 (ICANN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9887))

Included in the following conference series:

  • 4001 Accesses

Abstract

Classification with reject option allows classifiers to abstain from the classification of unclear cases. While it has been shown that global reject options are optimal for probabilistic classifiers, local reject schemes can enhance the performance of deterministic classifiers which do not provide faithful probability estimates [6, 10]. A first efficient scheme how to optimise local threshold parameters has recently been introduced [8]. In this contribution, we improve and simplify this scheme by restricting to a fewer number of possible candidates, and we demonstrate its performance for a one-versus-rest SVM classifier. Further, we have a glimpse at accompanying generalisation bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartlett, P.L., Mendelson, S.: Rademacher and gaussian complexities: risk bounds and structural results. J. Mach. Learn. Res. 3, 463–482 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Bartlett, P.L., Wegkamp, M.H.: Classification with a reject option using a hinge loss. J. Mach. Learn. Res. 9, 1823–1840 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27:1–27:27 (2011)

    Article  Google Scholar 

  4. Chow, C.: On optimum recognition error and reject tradeoff. IEEE Trans. Inf. Theor. 16(1), 41–46 (2006)

    Article  MATH  Google Scholar 

  5. Dudzinski, K., Walukiewicz, S.: Exact methods for the knapsack problem and its generalizations. Eur. J. Oper. Res. 28(1), 3–21 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fischer, L., Hammer, B., Wersing, H.: Local rejection strategies for learning vector quantization. In: Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P., Magg, S., Palm, G., Villa, A.E.P. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 563–570. Springer, Heidelberg (2014)

    Google Scholar 

  7. Fischer, L., Hammer, B., Wersing, H.: Combining offline and online classifiers for life-long learning. In: IJCNN (2015)

    Google Scholar 

  8. Fischer, L., Hammer, B., Wersing, H.: Optimum local rejection for classifiers. Neurocomputing (accepted 2016)

    Google Scholar 

  9. Fischer, L., Nebel, D., Villmann, T., Hammer, B., Wersing, H.: Rejection strategies for learning vector quantization – a comparison of probabilistic and deterministic approaches. In: Villmann, T., Schleif, F.-M., Kaden, M., Lange, M. (eds.) Advances in Self-Organizing Maps and Learning. AISC, vol. 295, pp. 109–118. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  10. Fumera, G., Roli, F., Giacinto, G.: Reject option with multiple thresholds. Pattern Recogn. 33, 2099–2101 (2000)

    Article  MATH  Google Scholar 

  11. Hansen, L.K., Liisberg, C., Salamon, P.: The error-reject tradeoff. Open Syst. Inf. Dynamics 4(2), 159–184 (1997)

    Article  MATH  Google Scholar 

  12. Herbei, R., Wegkamp, M.H.: Classification with reject option. Can. J. Stat. 34(4), 709–721 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector machines. Trans. Neur. Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  14. Koltchinskii, V., Panchenko, D., Lozano, F.: Some new bounds on the generalization error of combined classifiers. In: Advances in Neural Information Processing Systems 13, Papers from Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA, pp. 245–251 (2000)

    Google Scholar 

  15. Lei, Y., Dogan, Ü., Binder, A., Kloft, M.: Multi-class SVMs: from tighter data-dependent generalization bounds to novel algorithms. CoRR, abs/1506.04359 (2015)

    Google Scholar 

  16. Maximov, Y., Reshetova, D.: Tight risk bounds for multi-class margin classifiers. CoRR, abs/1507.03040 (2015)

    Google Scholar 

  17. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61–74. MIT Press (1999)

    Google Scholar 

  18. Ramaswamy, H.G., Tewari, A., Agarwal, S.: Consistent algorithms for multiclass classification with a reject option. CoRR, abs/1505.04137 (2015)

    Google Scholar 

  19. Villmann, T., Kaden, M., Bohnsack, A., Villmann, J.-M., Drogies, T., Saralajew, S., Hammer, B.: Self-adjusting reject options in prototype based classification. In: Workshop on Self-Organizing Maps (2015)

    Google Scholar 

  20. Wu, T.-F., Lin, C.-J., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 5, 975–1005 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Yuan, M., Wegkamp, M.H.: Classification methods with reject option based on convex risk minimization. J. Mach. Learn. Res. 11, 111–130 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

Funding by the CITEC centre of excellence is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Hammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kummert, J., Paassen, B., Jensen, J., Göpfert, C., Hammer, B. (2016). Local Reject Option for Deterministic Multi-class SVM. In: Villa, A., Masulli, P., Pons Rivero, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2016. ICANN 2016. Lecture Notes in Computer Science(), vol 9887. Springer, Cham. https://doi.org/10.1007/978-3-319-44781-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44781-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44780-3

  • Online ISBN: 978-3-319-44781-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics