Skip to main content

Effect of Simultaneous Time Series Prediction with Various Horizons on Prediction Quality at the Example of Electron Flux in the Outer Radiation Belt of the Earth

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2016 (ICANN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9887))

Included in the following conference series:

Abstract

Prediction of the time series of relativistic electrons flux in the outer radiation belt of the Earth is a complicated task, due to complexity and nonlinearity of the system “solar wind - the Earth’s magnetosphere”. However, using artificial neural networks it is possible to predict the value of the electron flux several hours ahead, based on the hourly time series of electron flux, parameters of solar wind and interplanetary magnetic field. The purpose of this study was to check, which approach provided higher precision of prediction with various horizons from one to twelve hours: autonomous prediction for each of the 12 prediction horizons, or simultaneous prediction for several horizons. An explanation of the obtained results is suggested.

This study was supported by RFBR grant no. 14-01-00293-a.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shea, M.A., Smart, D.F.: Space weather: the effects on operations in space. Adv. Space Res. 22(1), 29–37 (1998)

    Article  Google Scholar 

  2. Iucci, N., Levitin, A.E., Belov, A.V., et al.: Space weather conditions and spacecraft anomalies in different orbits. Space Weather 3(1), S01001 (2005)

    Article  Google Scholar 

  3. Pilipenko, V., Yagova, N., Romanova, N., et al.: Statistical relationships between the satellite anomalies at geostationary orbits and high-energy particles. Adv. Space Res. 37(6), 1192–1205 (2006)

    Article  Google Scholar 

  4. Friedel, R.H., Reeves, W.G.P., Obara, T.: Relativistic electron dynamics in the inner magnetosphere - a review. J. Atmos. Solar Terr. Phys. 64, 265–283 (2002)

    Article  Google Scholar 

  5. Paulikas, G.A., Blake, J.B.: Effects of the solar wind on magnetospheric dynamics: energetic electrons at the synchronous orbit. In: Olson, W.P., et al. (eds.) Quantitative Modeling of Magnetospheric Processes. Geophys. Monogr. Ser., vol. 21, pp. 180–202. AGU, Washington D.C. (1979)

    Chapter  Google Scholar 

  6. Miyoshi, Y., Kataoka, R.: Probabilistic space weather forecast of the relativistic electron flux enhancement at geosynchronous orbit. J. Atmos. Solar Terr. Phys. 70, 475–481 (2008)

    Article  Google Scholar 

  7. Nagai, T.: “Space weather forecast”: prediction of relativistic electron intensity at synchronous orbit. Geophys. Res. Lett. 15, 425–428 (1988)

    Article  Google Scholar 

  8. Baker, D.N., McPherron, R.L., et al.: Linear prediction filter analysis of relativistic electron properties at 6.6 \({\rm R_{E}}\). J. Geophys. Res. 95(A9), 15133–15140 (1990)

    Article  Google Scholar 

  9. Wei, H.-L., Billings, S.F.A., Surjala, A., et al.: Forecasting relativistic electron flux using dynamic multiple regression models. Ann. Geophys. 29, 415420 (2011)

    Article  Google Scholar 

  10. Ukhorskiy, A.Y., Sitnov, M.I., Sharma, A.S., et al.: Data-derived forecasting model for relativistic electron intensity at geosynchronous orbit. Geophys. Res. Lett. 31, L09806 (2004). doi:10.1029/2004GL019616

    Google Scholar 

  11. Degtyarev, V.I., Chudnenko, S.E., Kharchenko, I.P., et al.: Prediction of maximal daily average values of relativistic electron fluxes in geostationary orbit during the magnetic storm recovery phase. Geomag. Aeron. 49(8), 1208–1217 (2009). doi:10.1134/S0016793209080349

    Article  Google Scholar 

  12. Koons, H.C., Gorney, D.J.: A neural network model of the relativistic electron flux at geosynchronous orbit. J. Geophys. Res. 96, 5549–5556 (1990)

    Article  Google Scholar 

  13. Stringer, G.A., Heuten, I., Salazar, C., et al.: Artificial neural network (ANN) forecasting of energetic electrons at geosynchronous orbit. In: Lemaire, J.F. (ed.) Radiation Belts: Models and Standards. Geophys. Monogr. Ser., vol. 97, pp. 291–295. AGU, Washington, D.C. (1996)

    Chapter  Google Scholar 

  14. Ling, A.G., Ginet, G.P., Hilmer, R.V., et al.: A neural network-based geosynchronous relativistic electron flux forecasting model. Space Weather 8(9), S09003 (2010)

    Article  Google Scholar 

  15. Fukata, M., Taguchi, S., Okuzawa, T., et al.: Neural network prediction of relativistic electrons at geosynchronous orbit during the storm recovery phase: effects of recurring substorms. Ann. Geophys. 20(7), 947–951 (2002)

    Article  Google Scholar 

  16. Myagkova, I., Dolenko, S., Shiroky, V., et al.: Horizon of neural network prediction of relativistic electrons flux in the outer radiation belt of the earth. In: Proceedings of the 16th EANN Conference, pp. 9–14. ACM, New York (2015)

    Google Scholar 

  17. Efitorov, A., Myagkova, I., Sentemova, N., et al.: Prediction of relativistic electrons flux in the outer radiation belt of the earth using adaptive methods. Adv. Intell. Syst. Comput. 449, 281–287 (2016)

    Article  Google Scholar 

  18. Geostationary Operational Environmental Satellite Project. http://goes.gsfc.nasa.gov/

  19. Dolenko, S., Isaev, I., Obornev, E., et al.: Study of influence of parameter grouping on the error of neural network solution of the inverse problem of electrical prospecting. Commun. Comput. Inf. Sci. 383, 81–90 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irina Myagkova or Sergey Dolenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Myagkova, I., Shiroky, V., Dolenko, S. (2016). Effect of Simultaneous Time Series Prediction with Various Horizons on Prediction Quality at the Example of Electron Flux in the Outer Radiation Belt of the Earth. In: Villa, A., Masulli, P., Pons Rivero, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2016. ICANN 2016. Lecture Notes in Computer Science(), vol 9887. Springer, Cham. https://doi.org/10.1007/978-3-319-44781-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44781-0_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44780-3

  • Online ISBN: 978-3-319-44781-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics