Skip to main content

Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms

  • Chapter
  • First Online:
Resource Management for Big Data Platforms

Part of the book series: Computer Communications and Networks ((CCN))

Abstract

In this chapter, we describe an optimized approach for DNA sequence analysis on a heterogeneous platform that is accelerated with the Intel Xeon Phi. Such platforms commonly comprise one or two general purpose CPUs and one (or more) Xeon Phi coprocessors. Our parallel DNA sequence analysis algorithm is based on Finite Automata and finds patterns in large-scale DNA sequences. To determine the optimal worksharing (that is, DNA sequence fractions for the host and accelerating device) we propose a solution that combines combinatorial optimization and machine learning. The objective function that we aim to minimize is the execution time of the DNA sequence analysis. We use combinatorial optimization to efficiently explore the system configuration space and determine with machine learning the near-optimal system configuration for execution of the DNA sequence analysis. We evaluate our approach empirically using real-world DNA segments of various organisms. For experimentation, we use an accelerated platform that comprises two 12-core Intel Xeon E5 CPUs and an Intel Xeon Phi 7120P accelerator with 61 cores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, E., Bekas, C., Brandic, I., Genaim, S., Johnsen, E.B., Kondov, I., Pllana, S., Streit, A.: Preparing HPC applications for exascale: challenges and recommendations. In: 2015 International Conference on Network-Based Information Systems (NBiS), IEEE (2015)

    Google Scholar 

  2. Albayrak, O.E., Akturk, I., Ozturk, O.: Improving application behavior on heterogeneous manycore systems through kernel mapping. Parallel Comput. 39(12), 867–878 (2013). doi:10.1016/j.parco.2013.08.011

    Google Scholar 

  3. Arudchutha, S., Nishanthy, T., Ragel, R.G.: String matching with multicore CPUs: performing better with the Aho-Corasick algorithm. arXiv preprint arXiv:14031305 (2014)

  4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified platform for task scheduling on heterogeneous multicore architectures. Concurrency Comput.: Pract. Experience 23(2), 187–198 (2011)

    Article  Google Scholar 

  5. Ayguadé, E., Blainey, B., Duran, A., Labarta, J., Martínez, F., Martorell, X., Silvera, R.: Is the schedule clause really necessary in OpenMP? In: OpenMP Shared Memory Parallel Programming, pp. 147–159. Springer (2003)

    Google Scholar 

  6. Bellekens, X., Andonovic, I., Atkinson, R., Renfrew, C., Kirkham, T.: Investigation of GPU-based pattern matching. In: The 14th Annual Post Graduate Symposium on the Convergence of Telecommunications, Networking and Broadcasting (PGNet2013) (PGNet2013) (2013)

    Google Scholar 

  7. Benkner, S., Pllana, S., Traff, J., Tsigas, P., Dolinsky, U., Augonnet, C., Bachmayer, B., Kessler, C., Moloney, D., Osipov, V.: PEPPHER: efficient and productive usage of hybrid computing systems. Micro IEEE 31(5), 28–41 (2011)

    Article  Google Scholar 

  8. Brandic, I., Pllana, S., Benkner, S.: An approach for the high-level specification of QoS-aware grid workflows considering location affinity. Sci. Program. 14(3–4), 231–250 (2006)

    Google Scholar 

  9. Chacón, A., Moure, J.C., Espinosa, A., Hernndez, P.: In-step FM-Index for faster pattern matching. In: Alexandrov V.N., Lees M., Krzhizhanovskaya V.V., Dongarra J., Sloot P.M.A. (eds.) ICCS, Elsevier, Procedia Computer Science, vol. 18, pp. 70–79 (2013)

    Google Scholar 

  10. Chrysos, G.: Intel Xeon Phi Coprocessor-the Architecture. Intel Whitepaper (2014)

    Google Scholar 

  11. Collins, F.S., Green, E.D., Guttmacher, A.E., Guyer, M.S.: A vision for the future of genomics research. Nature 422(6934), 835–847 (2003)

    Article  Google Scholar 

  12. Dokulil, J., Bajrovic, E., Benkner, S., Pllana, S., Sandrieser, M., Bachmayer, B.: High-level support for hybrid parallel execution of C++ applications targeting Intel Xeon Phi coprocessors. In: ICCS, Elsevier, Procedia Computer Science, vol. 18, pp. 2508–2511 (2013)

    Google Scholar 

  13. Drews, F., Lichtenberg, J., Welch, L.R.: Scalable parallel word search in multicore/multiprocessor systems. J. Supercomput. 51(1), 58–75 (2010)

    Article  Google Scholar 

  14. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X., Planas, J.: Ompss: a proposal for programming heterogeneous multi-core architectures. Parallel Process. Lett. 21(02), 173–193 (2011)

    Article  MathSciNet  Google Scholar 

  15. Fahringer, T., Pllana, S., Testori, J.: Teuta: tool support for performance modeling of distributed and parallel applications. Computational Science - ICCS 2004. Lecture Notes in Computer Science, vol. 3038, pp. 456–463. Springer, Berlin (2004)

    Chapter  Google Scholar 

  16. Farkaš, T., Kubán, P., Lucká, M.: Effective parallel multicore-optimized k-mers counting algorithm. In: SOFSEM 2016: Theory and Practice of Computer Science: 42nd International Conference on Current Trends in Theory and Practice of Computer Science, Harrachov, Czech Republic, January 23–28, 2016, pp. 469–477. Springer, Berlin (2016)

    Google Scholar 

  17. Grewe, D., OBoyle, M.F.: A static task partitioning approach for heterogeneous systems using OpenCL. In: Compiler Construction, pp. 286–305. Springer (2011)

    Google Scholar 

  18. Herath, D., Lakmali, C., Ragel, R.: Accelerating string matching for bio-computing applications on multi-core CPUs. In: 2012 7th IEEE International Conference on Industrial and Information Systems (ICIIS), pp. 1–6 (2012)

    Google Scholar 

  19. Kessler, C.W., Dastgeer, U., Thibault, S., Namyst, R., Richards, A., Dolinsky, U., Benkner, S., Trff, J.L., Pllana, S.: Programmability and performance portability aspects of heterogeneous multi-/manycore systems. IEEE, pp. 1403–1408 (2012)

    Google Scholar 

  20. Khan, F.A., Han, Y., Pllana, S., Brezany, P.: An ant-colony-optimization based approach for determination of parameter significance of scientific workflows. In: 24th IEEE International Conference on Advanced Information Networking and Applications. Perth, WA, 2010, pp. 1241–1248 (2010). doi:10.1109/AINA.2010.24

  21. Kołodziej, J., Khan, S.: Data scheduling in data grids and data centers: a short taxonomy of problems and intelligent resolution techniques. In: Nguyen, N.T., Kolodziej, J., Burczyski, T., Biba, M. (eds.) Transactions on Computational Collective Intelligence X. Lecture Notes in Computer Science, vol. 7776, pp. 103–119. Springer, Berlin (2013)

    Chapter  Google Scholar 

  22. Kołodziej, J., Khan, S.U., Wang, L., Zomaya, A.Y.: Energy efficient genetic-based schedulers in computational grids. Concurrency Comput.: Pract. Experience 27(4), 809–829 (2015)

    Article  Google Scholar 

  23. Kouzinopoulos, C., Margaritis, K.: String matching on a multicore GPU using CUDA. In: 13th Panhellenic Conference on Informatics, 2009. PCI ’09, pp. 14–18 (2009)

    Google Scholar 

  24. Li, H., Ni, B., Wong, M.H., Leung, K.S.: A fast CUDA implementation of agrep algorithm for approximate nucleotide sequence matching. In: SASP, pp. 74–77. IEEE Computer Society (2011)

    Google Scholar 

  25. Lin, C.H., Liu, C.H., Chien, L.S., Chang, S.C.: Accelerating pattern matching using a novel parallel algorithm on GPUs. IEEE Trans. Comput. 62(10), 1906–1916 (2013)

    Article  MathSciNet  Google Scholar 

  26. Luchaup, D., Smith, R., Estan, C., Jha, S.: Speculative parallel pattern matching. IEEE Trans. Inf. Forensics Secur. 6(2), 438–451 (2011)

    Article  Google Scholar 

  27. Luftig, M.A., Richey, S.: DNA and forensic science. New Eng. L Rev. 35, 609 (2000)

    Google Scholar 

  28. Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous multiprocessors with adaptive mapping. In: 42nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-42, 2009, pp. 45–55. IEEE (2009)

    Google Scholar 

  29. Mellmann, A., Harmsen, D., Cummings, C.A., Zentz, E.B., Leopold, S.R., Rico, A., Prior, K., Szczepanowski, R., Ji, Y., Zhang, W., McLaughlin, S.F., Henkhaus, J.K., Leopold, B., Bielaszewska, M., Prager, R., Brzoska, P.M., Moore, R.L., Guenther, S., Rothberg, J.M., Karch, H.: Prospective genomic characterization of the german enterohemorrhagic escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS ONE 6(7):e22, 751 (2011)

    Google Scholar 

  30. Memeti, S., Pllana, S.: PaREM: a novel approach for parallel regular expression matching. In: 17th International Conference on Computational Science and Engineering (CSE-2014), pp. 690–697 (2014). doi:10.1109/CSE.2014.146

  31. Memeti, S., Pllana, S.: Accelerating DNA sequence analysis using Intel Xeon Phi. In: PBio at the 2015 IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA). IEEE (2015a)

    Google Scholar 

  32. Memeti, S., Pllana, S.: Analyzing large-scale DNA sequences on multi-core architectures. In: 18th IEEE International Conference on Computational Science and Engineering (CSE-2015). IEEE (2015b)

    Google Scholar 

  33. Nakao, M., Lee, J., Boku, T., Sato, M.: XcalableMP implementation and performance of NAS parallel benchmarks. In: Proceedings of the Fourth Conference on Partitioned Global Address Space Programming Model, p. 11. ACM (2010)

    Google Scholar 

  34. NCBI: National center for biotechnology information U.S. National Library of Medicine. http://www.ncbi.nlm.nih.gov/genbank (2015). Accessed Dec 2015

  35. Odajima, T., Boku, T., Hanawa, T., Lee, J., Sato, M.: GPU/CPU work sharing with parallel language XcalableMP-dev for parallelized accelerated computing. In: 2012 41st International Conference on Parallel Processing Workshops (ICPPW), pp. 97–106. IEEE (2012)

    Google Scholar 

  36. Pllana, S., Benkner, S., Mehofer, E., Natvig, L., Xhafa, F.: Towards an intelligent environment for programming multi-core computing systems. In: Euro-Par Workshops, Lecture Notes in Computer Science, vol. 5415, pp. 141–151. Springer (2008a)

    Google Scholar 

  37. Pllana, S., Benkner, S., Xhafa, F., Barolli, L.: Hybrid performance modeling and prediction of large-scale computing systems. In: CISIS 2008. International Conference on Complex, Intelligent and Software Intensive Systems, 2008, pp. 132–138 (2008b)

    Google Scholar 

  38. Pllana, S., Brandic, I., Benkner, S.: A survey of the state of the art in performance modeling and prediction of parallel and distributed computing systems. Int. J. Comput. Intell. Res. (IJCIR) 4(1), 17–26 (2008c)

    Google Scholar 

  39. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes, 3rd edn. In: The Art of Scientific Computing, 3rd edn. Cambridge University Press (2007)

    Google Scholar 

  40. Ravi, V.T., Agrawal, G.: A dynamic scheduling framework for emerging heterogeneous systems. In: 2011 18th International Conference on High Performance Computing (HiPC), pp. 1–10. IEEE (2011)

    Google Scholar 

  41. Rohrer, B.: How to choose algorithms for Microsoft Azure Machine Learning. https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-choice/ (2015). Accessed Oct 2015

  42. Sandrieser, M., Benkner, S., Pllana, S.: Using explicit platform descriptions to support programming of heterogeneous many-core systems. Parallel Comput. 38(1–2), 52–56 (2012)

    Article  Google Scholar 

  43. Scogland, T.R., Feng, Wc., Rountree, B., de Supinski, B.R.: CoreTSAR: adaptive worksharing for heterogeneous systems. In: Supercomputing, pp. 172–186. Springer (2014)

    Google Scholar 

  44. Stephens, Z.D., Lee, S.Y., Faghri, F., Campbell, R.H., Zhai, C., Efron, M.J., Iyer, R., Schatz, M.C., Sinha, S., Robinson, G.E.: Big data: astronomical or genomical? PLoS Biol 13(7):e1002, 195 (2015)

    Google Scholar 

  45. Tian, X., Saito, H., Preis, S., Garcia, E.N., Kozhukhov, S., Masten, M., Cherkasov, A.G., Panchenko, N.: Practical SIMD vectorization techniques for Intel Xeon Phi Coprocessors. In: IPDPS Workshops, pp. 1149–1158. IEEE (2013)

    Google Scholar 

  46. Tumeo, A., Villa, O.: Accelerating DNA analysis applications on GPU clusters. In: 2010 IEEE 8th Symposium on Application Specific Processors (SASP), pp. 71–76 (2010)

    Google Scholar 

  47. Viebke, A., Pllana, S.: The potential of the Intel (R) Xeon Phi for supervised deep learning. In: 2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC). pp. 758–765. IEEE (2015)

    Google Scholar 

  48. Villa, O., Chavarra-Miranda, D.G., Maschhoff, K.J.: Input-independent, scalable and fast string matching on the Cray XMT. In: IPDPS, IEEE, pp. 1–12 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suejb Memeti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Memeti, S., Pllana, S., Kołodziej, J. (2016). Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms. In: Pop, F., Kołodziej, J., Di Martino, B. (eds) Resource Management for Big Data Platforms. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-44881-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44881-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44880-0

  • Online ISBN: 978-3-319-44881-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics