Abstract
In this chapter, we describe an optimized approach for DNA sequence analysis on a heterogeneous platform that is accelerated with the Intel Xeon Phi. Such platforms commonly comprise one or two general purpose CPUs and one (or more) Xeon Phi coprocessors. Our parallel DNA sequence analysis algorithm is based on Finite Automata and finds patterns in large-scale DNA sequences. To determine the optimal worksharing (that is, DNA sequence fractions for the host and accelerating device) we propose a solution that combines combinatorial optimization and machine learning. The objective function that we aim to minimize is the execution time of the DNA sequence analysis. We use combinatorial optimization to efficiently explore the system configuration space and determine with machine learning the near-optimal system configuration for execution of the DNA sequence analysis. We evaluate our approach empirically using real-world DNA segments of various organisms. For experimentation, we use an accelerated platform that comprises two 12-core Intel Xeon E5 CPUs and an Intel Xeon Phi 7120P accelerator with 61 cores.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abraham, E., Bekas, C., Brandic, I., Genaim, S., Johnsen, E.B., Kondov, I., Pllana, S., Streit, A.: Preparing HPC applications for exascale: challenges and recommendations. In: 2015 International Conference on Network-Based Information Systems (NBiS), IEEE (2015)
Albayrak, O.E., Akturk, I., Ozturk, O.: Improving application behavior on heterogeneous manycore systems through kernel mapping. Parallel Comput. 39(12), 867–878 (2013). doi:10.1016/j.parco.2013.08.011
Arudchutha, S., Nishanthy, T., Ragel, R.G.: String matching with multicore CPUs: performing better with the Aho-Corasick algorithm. arXiv preprint arXiv:14031305 (2014)
Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified platform for task scheduling on heterogeneous multicore architectures. Concurrency Comput.: Pract. Experience 23(2), 187–198 (2011)
Ayguadé, E., Blainey, B., Duran, A., Labarta, J., Martínez, F., Martorell, X., Silvera, R.: Is the schedule clause really necessary in OpenMP? In: OpenMP Shared Memory Parallel Programming, pp. 147–159. Springer (2003)
Bellekens, X., Andonovic, I., Atkinson, R., Renfrew, C., Kirkham, T.: Investigation of GPU-based pattern matching. In: The 14th Annual Post Graduate Symposium on the Convergence of Telecommunications, Networking and Broadcasting (PGNet2013) (PGNet2013) (2013)
Benkner, S., Pllana, S., Traff, J., Tsigas, P., Dolinsky, U., Augonnet, C., Bachmayer, B., Kessler, C., Moloney, D., Osipov, V.: PEPPHER: efficient and productive usage of hybrid computing systems. Micro IEEE 31(5), 28–41 (2011)
Brandic, I., Pllana, S., Benkner, S.: An approach for the high-level specification of QoS-aware grid workflows considering location affinity. Sci. Program. 14(3–4), 231–250 (2006)
Chacón, A., Moure, J.C., Espinosa, A., Hernndez, P.: In-step FM-Index for faster pattern matching. In: Alexandrov V.N., Lees M., Krzhizhanovskaya V.V., Dongarra J., Sloot P.M.A. (eds.) ICCS, Elsevier, Procedia Computer Science, vol. 18, pp. 70–79 (2013)
Chrysos, G.: Intel Xeon Phi Coprocessor-the Architecture. Intel Whitepaper (2014)
Collins, F.S., Green, E.D., Guttmacher, A.E., Guyer, M.S.: A vision for the future of genomics research. Nature 422(6934), 835–847 (2003)
Dokulil, J., Bajrovic, E., Benkner, S., Pllana, S., Sandrieser, M., Bachmayer, B.: High-level support for hybrid parallel execution of C++ applications targeting Intel Xeon Phi coprocessors. In: ICCS, Elsevier, Procedia Computer Science, vol. 18, pp. 2508–2511 (2013)
Drews, F., Lichtenberg, J., Welch, L.R.: Scalable parallel word search in multicore/multiprocessor systems. J. Supercomput. 51(1), 58–75 (2010)
Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X., Planas, J.: Ompss: a proposal for programming heterogeneous multi-core architectures. Parallel Process. Lett. 21(02), 173–193 (2011)
Fahringer, T., Pllana, S., Testori, J.: Teuta: tool support for performance modeling of distributed and parallel applications. Computational Science - ICCS 2004. Lecture Notes in Computer Science, vol. 3038, pp. 456–463. Springer, Berlin (2004)
Farkaš, T., Kubán, P., Lucká, M.: Effective parallel multicore-optimized k-mers counting algorithm. In: SOFSEM 2016: Theory and Practice of Computer Science: 42nd International Conference on Current Trends in Theory and Practice of Computer Science, Harrachov, Czech Republic, January 23–28, 2016, pp. 469–477. Springer, Berlin (2016)
Grewe, D., OBoyle, M.F.: A static task partitioning approach for heterogeneous systems using OpenCL. In: Compiler Construction, pp. 286–305. Springer (2011)
Herath, D., Lakmali, C., Ragel, R.: Accelerating string matching for bio-computing applications on multi-core CPUs. In: 2012 7th IEEE International Conference on Industrial and Information Systems (ICIIS), pp. 1–6 (2012)
Kessler, C.W., Dastgeer, U., Thibault, S., Namyst, R., Richards, A., Dolinsky, U., Benkner, S., Trff, J.L., Pllana, S.: Programmability and performance portability aspects of heterogeneous multi-/manycore systems. IEEE, pp. 1403–1408 (2012)
Khan, F.A., Han, Y., Pllana, S., Brezany, P.: An ant-colony-optimization based approach for determination of parameter significance of scientific workflows. In: 24th IEEE International Conference on Advanced Information Networking and Applications. Perth, WA, 2010, pp. 1241–1248 (2010). doi:10.1109/AINA.2010.24
Kołodziej, J., Khan, S.: Data scheduling in data grids and data centers: a short taxonomy of problems and intelligent resolution techniques. In: Nguyen, N.T., Kolodziej, J., Burczyski, T., Biba, M. (eds.) Transactions on Computational Collective Intelligence X. Lecture Notes in Computer Science, vol. 7776, pp. 103–119. Springer, Berlin (2013)
Kołodziej, J., Khan, S.U., Wang, L., Zomaya, A.Y.: Energy efficient genetic-based schedulers in computational grids. Concurrency Comput.: Pract. Experience 27(4), 809–829 (2015)
Kouzinopoulos, C., Margaritis, K.: String matching on a multicore GPU using CUDA. In: 13th Panhellenic Conference on Informatics, 2009. PCI ’09, pp. 14–18 (2009)
Li, H., Ni, B., Wong, M.H., Leung, K.S.: A fast CUDA implementation of agrep algorithm for approximate nucleotide sequence matching. In: SASP, pp. 74–77. IEEE Computer Society (2011)
Lin, C.H., Liu, C.H., Chien, L.S., Chang, S.C.: Accelerating pattern matching using a novel parallel algorithm on GPUs. IEEE Trans. Comput. 62(10), 1906–1916 (2013)
Luchaup, D., Smith, R., Estan, C., Jha, S.: Speculative parallel pattern matching. IEEE Trans. Inf. Forensics Secur. 6(2), 438–451 (2011)
Luftig, M.A., Richey, S.: DNA and forensic science. New Eng. L Rev. 35, 609 (2000)
Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous multiprocessors with adaptive mapping. In: 42nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-42, 2009, pp. 45–55. IEEE (2009)
Mellmann, A., Harmsen, D., Cummings, C.A., Zentz, E.B., Leopold, S.R., Rico, A., Prior, K., Szczepanowski, R., Ji, Y., Zhang, W., McLaughlin, S.F., Henkhaus, J.K., Leopold, B., Bielaszewska, M., Prager, R., Brzoska, P.M., Moore, R.L., Guenther, S., Rothberg, J.M., Karch, H.: Prospective genomic characterization of the german enterohemorrhagic escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS ONE 6(7):e22, 751 (2011)
Memeti, S., Pllana, S.: PaREM: a novel approach for parallel regular expression matching. In: 17th International Conference on Computational Science and Engineering (CSE-2014), pp. 690–697 (2014). doi:10.1109/CSE.2014.146
Memeti, S., Pllana, S.: Accelerating DNA sequence analysis using Intel Xeon Phi. In: PBio at the 2015 IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA). IEEE (2015a)
Memeti, S., Pllana, S.: Analyzing large-scale DNA sequences on multi-core architectures. In: 18th IEEE International Conference on Computational Science and Engineering (CSE-2015). IEEE (2015b)
Nakao, M., Lee, J., Boku, T., Sato, M.: XcalableMP implementation and performance of NAS parallel benchmarks. In: Proceedings of the Fourth Conference on Partitioned Global Address Space Programming Model, p. 11. ACM (2010)
NCBI: National center for biotechnology information U.S. National Library of Medicine. http://www.ncbi.nlm.nih.gov/genbank (2015). Accessed Dec 2015
Odajima, T., Boku, T., Hanawa, T., Lee, J., Sato, M.: GPU/CPU work sharing with parallel language XcalableMP-dev for parallelized accelerated computing. In: 2012 41st International Conference on Parallel Processing Workshops (ICPPW), pp. 97–106. IEEE (2012)
Pllana, S., Benkner, S., Mehofer, E., Natvig, L., Xhafa, F.: Towards an intelligent environment for programming multi-core computing systems. In: Euro-Par Workshops, Lecture Notes in Computer Science, vol. 5415, pp. 141–151. Springer (2008a)
Pllana, S., Benkner, S., Xhafa, F., Barolli, L.: Hybrid performance modeling and prediction of large-scale computing systems. In: CISIS 2008. International Conference on Complex, Intelligent and Software Intensive Systems, 2008, pp. 132–138 (2008b)
Pllana, S., Brandic, I., Benkner, S.: A survey of the state of the art in performance modeling and prediction of parallel and distributed computing systems. Int. J. Comput. Intell. Res. (IJCIR) 4(1), 17–26 (2008c)
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes, 3rd edn. In: The Art of Scientific Computing, 3rd edn. Cambridge University Press (2007)
Ravi, V.T., Agrawal, G.: A dynamic scheduling framework for emerging heterogeneous systems. In: 2011 18th International Conference on High Performance Computing (HiPC), pp. 1–10. IEEE (2011)
Rohrer, B.: How to choose algorithms for Microsoft Azure Machine Learning. https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-choice/ (2015). Accessed Oct 2015
Sandrieser, M., Benkner, S., Pllana, S.: Using explicit platform descriptions to support programming of heterogeneous many-core systems. Parallel Comput. 38(1–2), 52–56 (2012)
Scogland, T.R., Feng, Wc., Rountree, B., de Supinski, B.R.: CoreTSAR: adaptive worksharing for heterogeneous systems. In: Supercomputing, pp. 172–186. Springer (2014)
Stephens, Z.D., Lee, S.Y., Faghri, F., Campbell, R.H., Zhai, C., Efron, M.J., Iyer, R., Schatz, M.C., Sinha, S., Robinson, G.E.: Big data: astronomical or genomical? PLoS Biol 13(7):e1002, 195 (2015)
Tian, X., Saito, H., Preis, S., Garcia, E.N., Kozhukhov, S., Masten, M., Cherkasov, A.G., Panchenko, N.: Practical SIMD vectorization techniques for Intel Xeon Phi Coprocessors. In: IPDPS Workshops, pp. 1149–1158. IEEE (2013)
Tumeo, A., Villa, O.: Accelerating DNA analysis applications on GPU clusters. In: 2010 IEEE 8th Symposium on Application Specific Processors (SASP), pp. 71–76 (2010)
Viebke, A., Pllana, S.: The potential of the Intel (R) Xeon Phi for supervised deep learning. In: 2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC). pp. 758–765. IEEE (2015)
Villa, O., Chavarra-Miranda, D.G., Maschhoff, K.J.: Input-independent, scalable and fast string matching on the Cray XMT. In: IPDPS, IEEE, pp. 1–12 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this chapter
Cite this chapter
Memeti, S., Pllana, S., Kołodziej, J. (2016). Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms. In: Pop, F., Kołodziej, J., Di Martino, B. (eds) Resource Management for Big Data Platforms. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-44881-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-44881-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44880-0
Online ISBN: 978-3-319-44881-7
eBook Packages: Computer ScienceComputer Science (R0)