Skip to main content

Delivering Social Multimedia Content with Scalability

  • Chapter
  • First Online:
Resource Management for Big Data Platforms

Part of the book series: Computer Communications and Networks ((CCN))

  • 1507 Accesses

Abstract

Content Distribution Network (CDN) services are increasingly being used to enable the delivery of bandwindth-demanding large media data to end-users of multimedia content providers. Especially today that HTTP traffic ascribed to media circulating over Online Social Networks (OSNs) has grown, a social-awareness mechanism over a CDN becomes essential [15]. This mechanism aims to exploit patterns of social interactions of the users to reduce the load on the origin server, the traffic on the Internet, and ultimately improve the user experience. By addressing the issue of which content will be copied in the surrogate servers of a CDN, it ensures a near-optimal content diffusion placement. At the same time, it moderates the impact on bandwidth that the Big Data transmitted via OSNs has, offering scalable solutions to existing CDNs or OSNs providers. In this framework, we further address complementary efficient caching policies in the surrogate servers of the CDN infrastructure. We experimentally prove that the various caching schemes applied contribute toward maximization of CDN performance, while content replication costs are taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, C., Wolf, J.L., Yu, P.S.: Caching on the World Wide Web. IEEE Trans. Knowl. Data Eng. 11(1), 94–107 (1999). doi:10.1109/69.755618

    Article  Google Scholar 

  2. Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.A.: The role of social networks in information diffusion. In: Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon, France, 16–20 April 2012, pp. 519–528 (2012). doi:10.1145/2187836.2187907

  3. Brodersen, A., Scellato, S., Wattenhofer, M.: YouTube around the world: geographic popularity of videos. In: Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon, France, 16–20 April 2012, pp. 241–250 (2012). doi:10.1145/2187836.2187870

  4. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y., Moon, S.B.: I tube, you tube, everybody tubes: analyzing the world’s largest user generated content video system. IN: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, IMC 2007, San Diego, California, USA, 24–26 Oct 2007, pp. 1–14 (2007). doi:10.1145/1298306.1298309

  5. Center for Applied Internet Data Analysis. https://www.caida.org. Accessed 30 Jun 2016

  6. Chard, K., Caton, S., Rana, O., Bubendorfer, K.: Social Cloud: cloud computing in social networks. In: Proceedings of the 3rd IEEE International Conference on Cloud Computing, CLOUD 2010, Miami, FL, USA, 5–10 July 2010, pp. 99–106 (2010). doi:10.1109/CLOUD.2010.28

  7. Cheng, X., Dale, C., Liu, J.: Statistics and social network of YouTube videos. In: Proceedings of the 16th International Workshop on Quality of Service, IWQoS 2008, University of Twente, Enskede, The Netherlands, 2–4 June 2008, pp. 229–238 (2008). doi:10.1109/IWQOS.2008.32

  8. Easley, D.A., Kleinberg, J.M.: Networks, Crowds, and Markets—Reasoning About a Highly Connected World. Cambridge University Press (2010)

    Google Scholar 

  9. Figueiredo, F., Benevenuto, F., Almeida, J.M.: The tube over time: characterizing popularity growth of YouTube videos. iN: Proceedings of the 4th International Conference on Web Search and Web Data Mining, WSDM 2011, Hong Kong, China, 9–12 Feb 2011, pp. 745–754 (2011). doi:10.1145/1935826.1935925

  10. Finamore, A., Mellia, M., Munafò, M.M., Torres, R., Rao, S.G.: YouTube everywhere: impact of device and infrastructure synergies on user experience. In: Proceedings of the 11th ACM SIGCOMM Conference on Internet Measurement, IMC 2011, Berlin, Germany, 2–4 Nov 2011, pp. 345–360 (2011). doi:10.1145/2068816.2068849

  11. Gill, P., Arlitt, M., Li, Z., Mahanti, A.: YouTube traffic characterization: a view from the edge. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, IMC 2007, San Diego, California, USA, 24–26 Oct 2007, pp. 15–28 (2007). doi:10.1145/1298306.1298310

  12. Gill, P., Arlitt, M., Li, Z., Mahanti, A.: Characterizing user sessions on YouTube. In: Proceedings of the SPIE Multimedia Computing and Networking Conference, MCN 2008, San Jose, California, USA, 30–31 Jan 2008, pp. 6818060–6818068 (2008). doi:10.1117/12.775130

  13. Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., Zadeh, R.: WTF: the who to follow service at Twitter. In: Proceedings of the 22nd International World Wide Web Conference, WWW 2013, Rio de Janeiro, Brazil, 13–17 May 2013, pp. 505–514 (2013). doi:10.1145/2488388.2488433

  14. Huang, C., Wang, A., Li, J., Ross, K.W.: Measuring and evaluating large-scale CDNs. In: Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement, IMC 2008, Vouliagmeni, Greece, 20–22 Oct 2008, pp. 15–29 (2008)

    Google Scholar 

  15. Kilanioti, I.: Improving multimedia content delivery via augmentation with social information. The Social Prefetcher approach. IEEE Trans. Multimedia 17(9), 1460–1470 (2015). doi:10.1109/TMM.2015.2459658

    Article  Google Scholar 

  16. Kilanioti, I., Papadopoulos, G.A.: Socially-aware multimedia content delivery for the cloud. In: Proceedings of the 8th IEEE/ACM International Conference on Utility and Cloud Computing, UCC 2015, Limassol, Cyprus, 7–10 Dec 2015, pp. 300–309 (2015). doi:10.1109/UCC.2015.48

  17. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM (JACM) 46(5), 604–632 (1999). doi:10.1145/324133.324140

    Article  MathSciNet  MATH  Google Scholar 

  18. Mitra, S., Agrawal, M., Yadav, A., Carlsson, N., Eager, D.L., Mahanti, A.: Characterizing web-based video sharing workloads. TWEB 5(2), 8 (2011). doi:10.1145/1961659.1961662

    Article  Google Scholar 

  19. Rodrigues, T., Benevenuto, F., Cha, M., Gummadi, P.K., Almeida, V.A.F.: On word-of-mouth based discovery of the web. In: Proceedings of the 11th ACM SIGCOMM Conference on Internet Measurement, IMC 2011, Berlin, Germany, 2–4 Nov 2011, pp. 381–396 (2011). doi:10.1145/2068816.2068852

  20. Sastry, N., Yoneki, E., Crowcroft, J.: Buzztraq: predicting geographical access patterns of social cascades using social networks. In: Proceedings of the 2nd ACM EuroSys Workshop on Social Network Systems, SNS 2009, Nuremberg, Germany, 31 March 2009, pp. 39–45 (2009). doi:10.1145/1578002.1578009

  21. Scellato, S., Mascolo, C., Musolesi, M., Crowcroft, J.: Track globally, deliver locally: improving content delivery networks by tracking geographic social cascades. In: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, Hyderabad, India, March 28–April 1, 2011, pp. 457–466 (2011). doi:10.1145/1963405.1963471

  22. Torres, R., Finamore, A., Kim, J.R., Mellia, M., Munafò, M.M., Rao, S.G.: Dissecting video server selection strategies in the YouTube CDN. In: Proceedings of the 31st International Conference on Distributed Computing Systems, ICDCS 2011, Minneapolis, Minnesota, USA, 20–24 June 2011, pp. 248–257 (2011). doi:10.1109/ICDCS.2011.43

  23. Traverso, S., Huguenin, K., Trestian, I., Erramilli, V., Laoutaris, N., Papagiannaki, K.: Tailgate: handling long-tail content with a little help from friends. In: Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon, France, 16–20 April 2012, pp. 151–160 (2012). doi:10.1145/2187836.2187858

Download references

Acknowledgments

For the development of algorithms and conducting of the accompanying experiments, the cloud infrastructure of the Department of Computer Science of the University of Cyprus, as well as Amazon Web Services, were used.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irene Kilanioti or George A. Papadopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Kilanioti, I., Papadopoulos, G.A. (2016). Delivering Social Multimedia Content with Scalability. In: Pop, F., Kołodziej, J., Di Martino, B. (eds) Resource Management for Big Data Platforms. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-44881-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44881-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44880-0

  • Online ISBN: 978-3-319-44881-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics