Skip to main content

A Review on Network Robustness from an Information Theory Perspective

  • Conference paper
  • First Online:
Discrete Optimization and Operations Research (DOOR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9869))

  • 1322 Accesses

Abstract

The understanding of how a networked system behaves and keeps its topological features when facing element failures is essential in several applications ranging from biological to social networks. In this context, one of the most discussed and important topics is the ability to distinguish similarities between networks. A probabilistic approach already showed useful in graph comparisons when representing the network structure as a set of probability distributions, and, together with the Jensen-Shannon divergence, allows to quantify dissimilarities between graphs. The goal of this article is to compare these methodologies for the analysis of network comparisons and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Higher degree nodes have a bigger probability of getting new connections.

  2. 2.

    The nodes fail in decreasing order of centrality.

References

  1. Bunke, H.: Recent developments in graph matching. In: Proceedings of the 15th International Conference on Pattern Recognition, vol. 2 (2000). http://dx.doi.org/10.1109/ICPR.2000.906030

  2. Dehmer, M., Emmert-Streib, F., Kilian, J.: A similarity measure for graphs with low computational complexity. Appl. Math. Comput. 182(1), 447–459 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Rodrigues, L., Travieso, G., Boas, P.R.V.: Characterization of complex networks: a survey of measurements. Adv. Phys. 56(1), 167–242 (2006)

    Google Scholar 

  4. Schaeffer, S.E.: Survey: graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, L., Hancock, E.R.: Graph kernels from the Jensen-Shannon divergence. J. Math. Imaging Vis. 47(1–2), 60–69 (2013)

    Article  MATH  Google Scholar 

  6. Schieber, T.A., Ravetti, M.G.: Simulating the dynamics of scale-free networks via optimization. PLoS ONE 8(12), e80783 (2013)

    Article  Google Scholar 

  7. Babai, L.: Graph isomorphism in quasipolynomial time. Arxiv, January 2016. http://arxiv.org/abs/1512.03547

  8. Carpi, L.C., Saco, P.M., Rosso, O.A., Ravetti, M.G.: Structural evolution of the tropical pacific climate network. Eur. Phys. J. B 85(11), 1–7 (2012). http://dx.doi.org/10.1140/epjb/e2012-30413-7

    Article  Google Scholar 

  9. Schieber, T.A., Carpi, L., Frery, A.C., Rosso, O.A., Pardalos, P.M., Ravetti, M.: Information theory perspective on network robustness. Phys. Lett. A 380(3), 359–364 (2016)

    Article  Google Scholar 

  10. Schieber, T.A., Carpi, L., Ravetti, M., Pardalos, P.M., Massoler, C., Diaz Guilera, A.: A size independent network difference measure based on information theory quantifiers (2016, Unpublished)

    Google Scholar 

  11. Carpi, L.C., Rosso, O.A., Saco, P.M., Ravetti, M.: Analyzing complex networks evolution through information theory quantifiers. Phys. Lett. A 375(4), 801–804 (2011). http://www.sciencedirect.com/science/article/pii/S037596011001577X

    Article  MATH  Google Scholar 

  12. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)

    Article  Google Scholar 

  13. Deza, M.M., Deza, E.: Encyclopedia of Distances, p. 590. Springer, Heidelberg (2009)

    Google Scholar 

  14. Lewis, T.G.: Network Science: Theory and Applications. Wiley Publishing, Hoboken (2009)

    Book  MATH  Google Scholar 

  15. Erdös, P., Rényi, A.: On random graphs. Publ. Math. 6(290), 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  16. Albert, R., Barabási, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002). http://arxiv.org/abs/cond-mat/0106096

    Google Scholar 

  17. Frank, O., Strauss, D.: Markov graphs. J. Am. Stat. Assoc. 81(395), 832–842 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(1), 440–442 (1998)

    Article  Google Scholar 

  19. Cox, T.F., Cox, T.F.: Multidimensional Scaling, 2nd edn. Chapman and Hall/CRC, Boca Raton (2000). http://www.amazon.com/Multidimensional-Scaling-Second-Trevor-Cox/dp/1584880945

    MATH  Google Scholar 

  20. Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting critical nodes in sparse graphs. Comput. Oper. Res. 36(7), 2193–2200 (2009). http://dx.doi.org/10.1016/j.cor.2008.08.016

    Article  MathSciNet  MATH  Google Scholar 

  21. Dinh, T.N., Xuan, Y., Thai, M.T., Pardalos, P.M., Znati, T.: On new approaches of assessing network vulnerability: hardness and approximation. IEEE/ACM Trans. Netw. 20(2), 609–619 (2012)

    Article  Google Scholar 

  22. Walteros, J.L., Pardalos, P.M.: A decomposition approach for solving critical clique detection problems. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 393–404. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Kunegis, J.: KONECT - the Koblenz network collection. In: Proceedings of International Web Observatory Workshop (2013)

    Google Scholar 

  24. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., den Broeck, W.V.: What’s in a crowd? analysis of face-to-face behavioral networks. J. Theor. Biol. 271(1), 166–180 (2011)

    Article  Google Scholar 

  25. Iyer, S., Killingback, T., Sundaram, B., Wang, Z.: Attack robustness and centrality of complex networks. PLoS ONE 8(4), e59613 (2013)

    Article  Google Scholar 

  26. Train bombing network dataset - KONECT, January 2016

    Google Scholar 

  27. Hayes, B.: Connecting the dots. Can the tools of graph theory and social-network studies unravel the next big plot? Am. Sci. 94(5), 400–404 (2006)

    Article  Google Scholar 

  28. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

Research is partially by supported by the Laboratory of Algorithms and Technologies for Network Analysis, National Research University Higher School of Economics, CNPq and FAPEMIG, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Schieber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Schieber, T., Ravetti, M., Pardalos, P.M. (2016). A Review on Network Robustness from an Information Theory Perspective. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds) Discrete Optimization and Operations Research. DOOR 2016. Lecture Notes in Computer Science(), vol 9869. Springer, Cham. https://doi.org/10.1007/978-3-319-44914-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44914-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44913-5

  • Online ISBN: 978-3-319-44914-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics