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Abstract. In this paper, we describe Compact-Table (CT), a bitwise
algorithm to enforce Generalized Arc Consistency (GAC) on table con-
straints. Although this algorithm is the default propagator for table
constraints in or-tools and OscaR, two publicly available CP solvers,
it has never been described so far. Importantly, CT has been recently
improved further with the introduction of residues, resetting operations
and a data-structure called reversible sparse bit-set, used to maintain
tables of supports (following the idea of tabular reduction): tuples are
invalidated incrementally on value removals by means of bit-set opera-
tions. The experimentation that we have conducted with OscaR shows
that CT outperforms state-of-the-art algorithms STR2, STR3, GAC4R,
MDD4R and AC5-TC on standard benchmarks.

1 Introduction

Table constraints, also called extension(al) constraints, explicitly express the al-
lowed combinations of values for the variables they involve as sequences of tuples,
which are called tables. Table constraints can theoretically encode any kind of
constraints and are amongst the most useful ones in Constraint Programming
(CP). Indeed, they are often required when modeling combinatorial problems in
many application fields. The design of filtering algorithms for such constraints
has generated a lot of research effort, see [1,19,17,9,29,13,16,10,26].

Over the last decade, many developments have thus been achieved for en-
forcing the well-known property called Generalized Arc Consistency (GAC) on
binary and/or non-binary extensionally defined constraints. Among successful
techniques, we find:

– bitwise operations that allow performing parallel operations on bit vectors.
Already exploited during the 70’s [28,23], they have been applied more re-
cently to the enforcement of arc consistency on binary constraints [3,18].

– residual supports (residues) that store the last found supports of each value.
Initially introduced for ensuring optimal complexity [2], they have been
shown efficient in practice [14,20,15] when used as simple sentinels.

– tabular reduction, which is a technique that dynamically maintains the ta-
bles of supports. Based on the structure of sparse sets [4,12], variants of
Simple Tabular Reduction (STR) have been proved to be quite competitive
[29,13,16].
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– resetting operations that saves substantial computing efforts in some partic-
ular situations. They have been successfully applied to the algorithm GAC4
[26].

In this paper, we introduce a very efficient GAC algorithm for table con-
straints that combines the use of bitwise operations, residual supports, tabular
reduction, and resetting operations. It is called Compact-Table (CT), and origi-
nates from or-tools, the Google solver that won the latest MiniZinc Challenges.
It is important to note that or-tools does not implement many global constraints,
but heavily relies on table constraints instead, with CT as embedding propaga-
tor. Through the years, CT has reached a good level of maturity because it has
been continuously improved and extended with many cutting edge ideas such as
those introduced earlier. Unfortunately, the core algorithm of CT has not been
described in the literature so far1 and is thus seldom used as a reference for
practical comparisons. The first version of CT implemented in or-tools, with a
bit-set representation of tables, dates back to 2012, whereas the version of CT
presented in this paper is exactly the last one implemented in OscaR [25].

Outline. After presenting related works in Section 2, we introduce some technical
background in Section 3. Then, we recall in Section 4 usual state restoration
mechanisms implemented in CP solvers, and describe reversible sparse bit-sets
in Section 5. In Section 6, we describe our algorithm CT. Before concluding, we
present in Section 7 the results of an experimentation we have conducted with
CT and its contenders on a large variety of benchmarks.

2 Related Work

Propagators for table constraints are filtering procedures used to enforce GAC.
Given the importance of table constraints, it is not surprising that much research
has been carried out in order to find efficient propagators. This section briefly
describes the most efficient ones.

Generic Algorithms. On the one hand, GAC3 is a classical general-purpose GAC
algorithm [21] for non-binary constraints. Each call to this algorithm for a con-
straint requires testing if each value is still supported by a valid tuple accepted
by the constraint. Several improvements to fasten the search for a support gave
birth to variants such as GAC2001 [2] and GAC3rm [15]. Unfortunately, the
worst-case time complexity of all these algorithms grows exponentially with the
arity of the constraints. On the other hand, GAC4 [24] is a value-based algorithm,
meaning here that for each value, it maintains a set of valid tuples supporting
it. Each time a value is removed, all supporting tuples are removed from the
associated sets, which allows us to identify values without any more supports.
GAC4R is a recent improvement of GAC4 [26], which recomputes the sets of
supporting tuples from scratch when it appears to be less costly than updating
them based on the removed values.
1 Note that some parts of this paper were published in a Master Thesis report [6].



AC5 Instantiations. In [10], Mairy et al. introduce several instantiations of
the generic AC5 algorithm for table constraints, the best of them being AC5-
TCOptSparse. This algorithm shares some similarities with GAC4 since it pre-
computes lists of supporting tuples which allows us to retrieve efficiently new
supports by iterating over these lists. Note that a reversible integer is used to
indicate the current position of a support in each list. This algorithm is imple-
mented in Comet, and has been shown to be efficient on ternary and quaternary
constraints.

Simple Tabular Reduction. STR1 [29] and STR2 [13] are coarse-grained algo-
rithms that globally enforce GAC by traversing the constraint tables while dy-
namically maintaining them: each call to the algorithm for a constraint removes
the invalid tuples from its table. The improvements brought in STR2 avoid
unnecessary operations by considering only relevant subsets of variables when
checking the validity of a tuple, and collecting supported values. Contrary to its
predecessors, STR3 [16] is a fine-grained (or value-based) algorithm. For each
value, it initially computes a static array of tuples supporting it, and keeps
a reversible integer curr that indicates the position of the last valid tuple in
the array. STR3 also maintains the set of valid tuples. STR3 is shown to be
complementary to STR2, being more efficient when the tables are not reduced
drastically during search.

Compressed Representations. Other algorithms gamble on the compression of
tables to reduce the time needed to ensure GAC. The most promising data
structure allowing a more compact representation is the Multi-valued Decision
Diagram (MDD) [27]. Two notable algorithms using MDDs as main data struc-
ture are mddc [5] and MDD4R [26]. The former does not modify the decision
diagram and performs a depth-first search of the MDD during propagation to
detect which parts of the MDD are consistent or not. MDD4R dynamically main-
tains the MDD by deleting nodes and edges that do not belong to a solution.
Each value is matched with its corresponding edges in the MDD, so, when a
value has none of its edges present in the MDD, it can be removed.

3 Technical Background

A constraint network (CN) N is composed of a set of n variables and a set of
e constraints. Each variable x has an associated domain, denoted by dom(x),
that contains the finite set of values that can be assigned to it. Each constraint c
involves an ordered set of variables, called the scope of c and denoted by scp(c),
and is semantically defined by a relation, denoted by rel(c), which contains the
set of tuples allowed for the variables involved in c. The arity of a constraint c is
|scp(c)|, i.e., the number of variables involved in c. A (positive) table constraint
c is a constraint such that rel(c) is defined explicitly by listing the tuples that
are allowed by c.



Example 1. The constraint x 6= y with x ∈ {1, 2, 3} and y ∈ {1, 2} can be
alternatively defined by the table constraint c such that scp(c) = {x, y} and
rel(c) = {(1, 2), (2, 1), (3, 1), (3, 2)}. We also write:

〈x, y〉 ∈ T with T = 〈(1, 2), (2, 1), (3, 1), (3, 2)〉

Let τ = (a1, a2, . . . , ar) be a tuple of values associated with an ordered set
of variables X = {x1, x2, . . . , xr}. The ith value of τ is denoted by τ [i] or τ [xi].
The tuple τ is valid iff ∀i ∈ 1..r, τ [i] ∈ dom(xi). An r-tuple τ is a support on
the r-ary constraint c iff τ is a valid tuple that is allowed by c. If τ is a support
on a constraint c involving a variable x and such that τ [x] = a, we say that τ
is a support for (x, a) on c. Generalized Arc Consistency (GAC) is a well-known
domain-filtering consistency defined as follows:

Definition 1. A constraint c is generalized arc consistent (GAC) iff ∀x ∈
scp(c),∀a ∈ dom(x), there exists at least one support for (x, a) on c. A CN
N is GAC iff every constraint of N is GAC.

Enforcing GAC is the task of removing from domains all values that have
no support on a constraint. Many algorithms have been devised for establishing
GAC according to the nature of the constraints. For table constraints, STR [29]
is such an algorithm: it removes invalid tuples during search of supports using
a sparse set data structure which separates valid tuples from invalid ones. This
method of seeking supports improves search time by avoiding redundant tests on
invalid tuples that have already been detected as invalid during previous GAC
enforcements. STR2 [13], an optimization of STR, limits some basic operations
concerning the validity of tuples and the identification of supports, through the
introduction of two important sets called Ssup and Sval (described later).

4 Reversible Objects and Implementation Details

Trail and Timestamping. The issue of storing related states of the solving pro-
cess is essential in CP. In many solvers2, a general mechanism is used for doing
and undoing (on backtrack) the current state. This mechanism is called a trail
and it was first introduced in [8] for implementing non-deterministic search. A
trail is a stack of pairs (location, value) where location stands for any piece
of memory (e.g., a variable), which can be restored when backtracking. Typi-
cally, at each search node encountered during the solving process, the constraint
propagation algorithm is executed. A same filtering procedure (propagator) can
thus be executed several times at a given node. Consequently, if one is inter-
ested in storing some information concerning a filtering procedure, the value of
a same memory location can be changed several times. However, stamping that
is part of the "folklore" of programming [11] can be used to avoid storing a same
memory location on the trail more than once per search node. The idea behind
timestamping is that only the final state of a memory location is relevant for
2 One notable exception is Gecode, a copy-based solver.



its restoration on backtrack. The trail contains a general time counter that is
incremented at each search node, and a timestamp is attached to each memory
location indicating the time at which its last storage on the trail happened. If
a memory location changes and its timestamp matches the current time of the
trail then there is no need to store it again. CP solvers generally expose some
"reversible" objects to the users using this trail+timestamping mechanism. The
most basic one is the reversible version of primitive types such as int or long
values. In the following, we denote by rint and rlong the reversible versions
of int and long primitive types.

Reversible Sparse Sets. Reversible primitive types can be used to implement
more complex data structures such as reversible sets. It was shown in [12] how
to implement a reversible set using a single rint that represents the current
size (limit) of the set. In this structure, which is called reversible sparse set, an
array of size n is used to store the permutation from 0 to n − 1. All values in
this permutation array at indices smaller than or equal to a variable limit are
considered as part of the set, while the others are considered as removed. When
iterating on current values of the set (with decreasing indices from limit to 0),
the value at the current index can be removed in O(1) by just swapping it with
the value stored at limit and decrementing limit. Making a sparse set reversible
just requires managing a single rint for limit. On backtrack, when the limit is
restored, all concerned removed values are restored in O(1).

Domains and Deltas. In OscaR [25], the implementation of domains relies on re-
versible sparse sets. One advantage of implementing domains with this structure
is that one can easily retrieve the set of values removed from a domain between
any two calls to a given filtering procedure. All we need to store in the filtering
procedure is the last size of the domain. The delta set (set of values removed
between the two calls) is composed of all the values located between the current
size and the last recorded size. More details on this cheap mechanism to retrieve
the delta sets can be found in [12].

5 Reversible Sparse Bit-Sets

This section describes the class RSparseBitSet that is the main data structure
for our algorithm to maintain the supports. In what follows, when we refer to
an array t, t[0] denotes the first element (indexing starts at 0) and t.length the
number of its cells (size).

The class RSparseBitSet, which encapsulates four fields and 6 methods,
is given in Algorithm 1. One important field is words, an array of p 64-bit words
(actually, reversible long integers), which defines the current value of the bit-set:
the ith bit of the jth word is 1 iff the (j − 1)× 64 + ith element of the (initial)
set is present. Initially, all words in this array have all their bits at 1, except
for the last word that may involve a suffix of bits at 0. For example, if we want
to handle a set initially containing 82 elements, then we build an array with
p = d82/64e = 2 words that initially looks like:



Algorithm 1: Class RSparseBitSet
1 words: array of rlong // words.length = p
2 index: array of int // index.length = p
3 limit: rint
4 mask: array of long // mask.length = p

5 Method isEmpty(): Boolean
6 return limit = −1

7 Method clearMask()
8 foreach i from 0 to limit do
9 offset← index[i]

10 mask[offset]← 064

11 Method reverseMask()
12 foreach i from 0 to limit do
13 offset← index[i]
14 mask[offset]← ~mask[offset] // bitwise NOT

15 Method addToMask(m: array of long)
16 foreach i from 0 to limit do
17 offset← index[i]
18 mask[offset]← mask[offset] | m[offset] // bitwise OR

19 Method intersectWithMask()
20 foreach i from limit downto 0 do
21 offset← index[i]
22 w ← words[offset] & mask[offset] // bitwise AND
23 if w 6= words[offset] then
24 words[offset]← w
25 if w = 064 then
26 index[i]← index[limit]
27 index[limit]← offset
28 limit← limit− 1

29 Method intersectIndex(m: array of long): int
/* Post: returns the index of a word where the bit-set
intersects with m, -1 otherwise */

30 foreach i from 0 to limit do
31 offset← index[i]
32 if words[offset] & m[offset] 6= 064 then
33 return offset

34 return −1

words: 11111111111111111111111111111111 11111111111111111100000000000000



Because, in our context, only non-zero words (words having at least one bit
set to 1) are relevant when processing operations on the bit-set, we rely on the
sparse-set technique by managing in an array index the indices of all words:
the indices of all non-zero words are in index at positions less than or equal to
the value of a variable limit, and the indices of all zero-words are in index at
positions strictly greater than limit. For our example, we initially have:

words: 11111111111111111111111111111111 11111111111111111100000000000000
index: 0 1
limit : 1

If we suppose now that the 66 first elements of our set above are removed,
we obtain:

words: 00000000000000000000000000000000 00111111111111111100000000000000
index: 1 0
limit: 0

The class invariant describing the state of a reversible sparse bit-set is the
following:

– index is a permutation of [0, . . . , p− 1], and
– words[index[i]] 6= 064 ⇔ i ≤ limit, ∀i ∈ 0..p− 1

Note that the reversible nature of our object comes from 1) an array of
reversible long (denoted rlong) (instead of simple longs) to store the bit words,
and 2) the reversible prefix size of non-zero words by using a reversible int
(rint).

A RSparseBitSet also contains a kind of local temporary array, called
mask. Is is used to collect elements with Method addToMask(), and can be
cleared and reversed too. A RSparseBitSet can only be modified by means
of the method intersectWithMask() which is an operation used to intersect with
the elements collected in mask. An illustration of the usage of these methods is
given in next example.

words 1 0 1 0 1 1 1 1
addToMask 1 1 1 0 1 0 0 0
addToMask 0 0 0 1 0 0 0 1

mask 1 1 1 1 1 0 0 1
intersectWithMask 1 0 1 0 1 0 0 1

Fig. 1: RSparseBitSet example

Example 2. Figure 1 illustrates the use of Methods addToMask() and inter-
sectWithMask(). We assume that the current state of the bit-set is given by the
value of words, and that clearMask() has been called such that mask is initially



empty. Then two bit-sets are collected in mask by calling addToMask(). The
value of mask is represented after these two operations. Finally intersectWith-
Mask() is executed and the new value of the bit-set words is given at the last
row of Figure 1.

We now describe the implementation of the methods in RSparseBitSet.
Method isEmpty() simply checks if the number of non-zero words is different
from zero (if the limit is set to -1, it means that all words are non-zero). Method
clearMask() sets to 0 all words of mask corresponding to non-zero words of words,
whereas Method reverseMask() reverses all words of mask. Method addToMask()
applies a word by word logical bit-wise or operation. Once again, notice that
this operation is only applied to words of mask corresponding to non-zero words
of words. Method intersectMask() considers each non-zero word of words in turn
and replaces it by its intersection with the corresponding word of mask. In case
the resulting new word is zero, it is swapped with the last non-zero word and
the value of limit is decremented. Finally, Method intersectIndex() checks if a
given bit-set (array of longs) intersects with the current bit-set: it returns the
index of the first word where an intersection can be proved, -1 otherwise.

6 Compact-Table (CT) Algorithm

As STR2 and STR3, Compact-Table (CT) is a GAC algorithm that dynamically
maintains the set of valid supports regarding the current domain of each variable.
The main difference is that CT is based on an object RSparseBitSet. In this
set, each tuple is indexed by the order it appears in the initial table. Invalid tuples
are removed during the initialization as well as values that are not supported by
any tuple. The class ConstraintCT, Algorithm 2, allows us to implement any
positive table constraint c while running the CT algorithm to enforce GAC.

6.1 Fields

As fields of Class ConstraintCT, we first find scp for representing the scope of
c and currTable for representing the current table of c by means of a reversible
sparse bit-set. If 〈τ0, τ1, . . . , τp−1〉 is the initial table of c, then currTable is a
RSparseBitSet object (of initial size p) such that the value i is contained (is
set to 1) in the bit-set if and only if the ith tuple is valid:

i ∈ currTable⇔ ∀x ∈ scp(c), τi[x] ∈ dom(x)

We also have three fields Sval, Sval and lastSizes in the spirit of STR2. In-
deed, as in [13], we introduce two sets of variables, called Sval and Ssup. The set
Sval contains uninstantiated variables (and possibly, the last assigned variable)
whose domains have been reduced since the previous invocation of the filter-
ing algorithm on c. To set up Sval, we need to record the domain size of each
modified variable x right after the execution of CT on c: this value is recorded
in lastSizes[x]. The set Ssup contains uninstantiated variables (from the scope



of the constraint c) whose domains contain each at least one value for which a
support must be found. These two sets allow us to restrict loops on variables to
relevant ones.

We also have a field supports containing static data. During the set up of the
table constraint c, CT also computes a static array of words supports[x, a], seen
as a bit-set, for each variable-value pair (x, a) where x ∈ scp(c) ∧ a ∈ dom(x):
the bit at position i in the bit-set is 1 if and only if the tuple τi in the initial
table of c is a support for (x, a).

T x y z

0 a a a
1 a a b
2 a b c
3 b a a

a c b
4 a b b
5 b a b
6 b b a
7 b b b

(a) The indexed tuples

currTable 1 1 1 1 1 1 1 1
supports[x, a] 1 1 1 0 1 0 0 0
supports[x, b] 0 0 0 1 0 1 1 1
supports[y, a] 1 1 0 1 0 1 0 0
supports[y, b] 0 0 1 0 1 0 1 1
supports[y, d] 0 0 0 0 0 0 0 0
supports[z, a] 1 0 0 1 0 0 1 0
supports[z, b] 0 1 0 0 1 1 0 1
supports[z, c] 0 0 1 0 0 0 0 0

(b) The corresponding bit-sets

Fig. 2: Illustration of the data structures after the initialization of 〈x, y, z〉 ∈ T .
The tuple (a, c, b) will not be indexed and d will be removed from dom(y).

Example 3. Figure 2 shows an illustration of the content of those bit-sets after
the initialization of the following table constraint 〈x, y, z〉 ∈ T , with:

– dom(x) = {a, b}, dom(y) = {a, b, d}, dom(z) = {a, b, c}
– T = 〈(a, a, a), (a, a, b), (a, b, c), (b, a, a), (a, c, b), (a, b, b), (b, a, b), (b, b, a), (b, b, b)〉

The tuple (a, c, b) is initially invalid because c /∈ dom(y), and thus will not be
indexed. Value d will be removed from dom(y) given that it is not supported by
any tuple.

Finally, we have an array residues such that for each variable-value pair
(x, a), residues[x, a] denotes the index of the word where a support was found
for (x, a) the last time one was sought for.

6.2 Methods

The main method in ConstraintCT is enforceGAC(). After the initialization
of the sets Sval and Ssup, CT updates currTable to filter out (indices of) tuples
that are no more supports, and then considers each variable-value pair to check
whether these values still have a support.



Algorithm 2: Class ConstraintCT
1 scp: array of variables // Scope
2 currTable: RSparseBitSet // Current table
3 Sval, Ssup // Temporary sets of variables
4 lastSizes // lastSizes[x] is the last size of the domain of x
5 supports // supports[x, a] is the bit-set of supports for (x, a)
6 residues // residues[x, a] is the last found support for (x, a)
7 Method updateTable()
8 foreach variable x ∈ Sval do
9 currTable.clearMask()

10 if |∆x| < |dom(x)| then // Incremental update
11 foreach value a ∈ ∆x do
12 currTable.addToMask(supports[x, a])
13 currTable.reverseMask()
14 else // Reset-based update
15 foreach value a ∈ dom(x) do
16 currTable.addToMask(supports[x, a])

17 currTable.intersectWithMask()
18 if currTable.isEmpty() then
19 break

20 Method filterDomains()
21 foreach variable x ∈ Ssup do
22 foreach value a ∈ dom(x) do
23 index← residues[x, a]
24 if currTable.words[index] & supports(x, a)[index] = 064 then
25 index← currTable.intersectIndex(supports[x, a])
26 if index 6= −1 then
27 residues[x, a]← index
28 else
29 dom(x)← dom(x) \ {a}

30 lastSize[x]← |dom(x)|

31 Method enforceGAC()
32 Sval ← {x ∈ scp : |dom(x)| 6= lastSize[x]}
33 foreach variable x ∈ Sval do
34 lastSize[x]← |dom(x)|
35 Ssup ← {x ∈ scp : |dom(x)| > 1}
36 updateTable()
37 if currTable.isEmpty() then
38 return Backtrack
39 filterDomains()



Updating the Current Table For each variable x ∈ Sval, i.e., each vari-
able x whose domain has changed since the last time the filtering algorithm was
called, updateTable() performs some operations. This method assumes an access
to the set of values ∆x removed from dom(x). There are two ways of updating
currTable, either incrementally or from scratch after resetting. Note that the
idea of using resets has been proposed in [26] and successfully applied to GAC4
and MDD4, with the practical interest of saving computational effort in some
precise contexts. This is the strategy implemented in updateTable(), by consid-
ering a reset-based computation when the size of the domain is smaller than the
number of deleted values.

In case of an incremental update (line 10), the union of the tuples to be
removed is collected by calling addToMask() for each bit-set (of supports) cor-
responding to removed values, whereas in case of a reset-based update (line 14),
we perform the union of the tuples to be kept. To get a mask ready to apply,
we just need to reverse it when it has been built from removed values. Finally,
the (indexes of) tuples of currTable not contained in the mask, built from x,
are directly removed by means of intersectWithMask(). When there is no more
tuple in the current table, a failure is detected, and updateTable() is stopped by
means of a loop break.

Filtering of Domains Values are removed from the domain of some vari-
ables during the search of a solution, which can lead to inconsistent values in
the domain of other variables. As currTable is a reversible and dynamically
maintained structure, the value of some bits changes from 1 to 0 when tuples
become invalid (or from 0 to 1 when the search backtracks). On the contrary,
the supports bit-sets are only computed at the creation of the constraint and
are not maintained during search. It follows from the definition of those bit-sets
that (x, a) has a valid support if and only if

(currTable ∩ supports[x, a]) 6= ∅ (1)
Therefore, each time a tuple becomes invalid, the constraint must check this

condition for every variable value pair (x, a) such that a ∈ dom(x), and remove
a from dom(x) if the condition is not satisfied any more. This operation is effi-
ciently implemented in filterDomains() with the help of residues and the method
intersectIndex().
Example 4. The same set of tuples as in Example 3 is considered. Suppose now
that a was removed from dom(x) (by another constraint) after the initializa-
tion. Given that the domain of x is reduced, when updateTable() is called by
enforceGAC(), all tuples supporting a (because ∆x = {a}) will be invalidated.
Figure 3a illustrates the intermediary bit-sets used to compute the new value
currTableout from currTablein and supports[x, a]. Then filterDomains() com-
putes for each variable-value pair (xi, ai) (with xi ∈ Ssup and ai ∈ dom(x)) the
intersection of its associated set of supports with currTable as shown in Figure
3b. Given that the intersection for supports[z, c] and currTable is empty, c is
removed from dom(z).



currTablein 1 1 1 1 1 1 1 1
supports[x, a] 1 1 1 0 1 0 0 0
currTableout 0 0 0 1 0 1 1 1

(a) updateTable() invalidates tu-
ples supporting (x, a)

currTable 0 0 0 1 0 1 1 1
supports[x, b] ∩ currTable 0 0 0 1 0 1 1 1
supports[y, a] ∩ currTable 0 0 0 1 0 1 0 0
supports[y, b] ∩ currTable 0 0 0 0 0 0 1 1
supports[z, a] ∩ currTable 0 0 0 1 0 0 1 0
supports[z, b] ∩ currTable 0 0 0 0 0 1 0 1
supports[z, c] ∩ currTable 0 0 0 0 0 0 0 0

(b) filterDomains() removes c from dom(z)

Fig. 3: Illustration of enforceGAC() after the removal of a from dom(x).

6.3 Improvements

The algorithm in Section 6.2 can be improved to avoid unnecessary computations
in some cases.

Filtering out bounded variables. The initialization of Sval at line 32 can be only
performed from unbound variables (and the last assigned variable), instead from
the whole scope. We can maintain them in a reversible sparse set.

Last modified variable. It is not necessary to attempt to filter values out from
the domain of a variable x if this was the only modified variable since the last
call to enforceGAC(). Indeed, when updateTable() is executed, the new state of
currTable will be computed from dom(x) or ∆x only. Because every value of
x had a support in currTable the last time the propagator was called, we can
omit filtering dom(x) by initially removing x from Ssup.

7 Experiments

We experimented CT on 1, 621 CSP instances involving (positive) table con-
straints (15GB of uncompressed files in format XCSP 2.1). This corresponds to
a large variety of instances, taken from 37 series. For guiding search, we used
binary branching with domain over degree as variable ordering heuristic and
min value as value ordering heuristic. A timeout of 1, 000 seconds was used
for each instance. The tested GAC algorithms are CT, STR2 [13], STR3 [16],
GAC4 [24,26], GAC4R [26], MDDR [26] and AC5TCRecomp [22]. All scripts,
codes and benchmarks allowing to reproduce our experiments are available at
https://bitbucket.org/pschaus/xp-table. The experiments were run
on a 32-core machine (1400MHz cpu) with 100GB using Java(TM) SE Run-
time Environment (build 1.8.0_60-b27) with 10GB of memory allocated (-Xmx
option).

Performance Profiles. Let tp, s represent the time obtained with filtering algo-
rithm s ∈ S on instance p ∈ P . The performance ratio is defined as follows:

https://bitbucket.org/pschaus/xp-table


rp, s = tp, s

min{tp, s∗ |s∗∈S} , where s
∗ denotes the fastest algorithm. A ratio rp, s = 1

means that s was the fastest on p. The performance profile [7] is a cumulative
distribution function of the performance of s compared to other algorithms:

ρs(τ) = 1
|P |
× |{p ∈ P |rp, s ≤ τ}|

Our results are visually aggregated to form a performance profile in Fig-
ure 4 generated by means of the online tool http://sites.uclouvain.be/
performance-profile. Note that we filtered out the instances that i) could
not be solved within 1, 000 seconds by all algorithms ii) were solved in less than 2
seconds by the slowest algorithm, and iii) required less than 500 backtracks. The
final set of instances used to build the profile is composed of 227 instances. An
interactive performance profile is also available at https://www.info.ucl.
ac.be/~pschaus/assets/publi/performance-profile-ct to let the
interested reader deactivate some family of instances to analyze the results more
closely.
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Fig. 4: Performance Profile

Table 1 reports the speedup statistics of CT over the other algorithms. A
first observation is that CT is the fastest algorithm on 94.47% of the instances.
Among all tested algorithms, AC5TCRecomp obtains the worse results. Then it
is not clear which one among STR2, STR3, GAC4 and GAC4R is the second
best algorithm. Based on the average speedup, STR3 seems to be the second
best algorithm followed by STR2, MDD4R and GAC4R. Importantly, one can
observe that the speedup of CT over the best of the other algorithms is about
3.77 on average.

http://sites.uclouvain.be/performance-profile
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Speedup STR2 STR3 GAC4 GAC4R MDD4R AC5-TC Best2

average 9.11 5.07 15.59 11.37 10.38 50.40 3.77
min 0.76 1.09 0.92 1.13 0.13 1.05 0.13
max 88.58 51.04 173.24 208.52 50.84 1850.82 15.99
std 10.64 4.36 19.67 18.57 9.46 134.13 2.87

Table 1: Speedup analysis of CT over the other algorithms. Column ’Best2’
corresponds to a virtual second best solver (by considering the minimum time
taken by all algorithms except CT).

Impact of Resetting Operations. In Algorithm 2, the choice of being incremental
or not, when updating currTable, depends on the size of several sets and is
thus dynamic. We propose to analyze two variants of Algorithm 2 when this
choice is static:
– Full incremental (CTI): only the body of the ’if’ at line 10 is executed (deltas

are systematically used).
– Full re-computation (CTR) : only the body of the ’else’ at line 14 is executed

(domains are systematically used).

The performance profiles with these two variants are given in Figure 5, and the
speedup table of the static versions over the dynamic one is given in Table 2.

19/04/16 15:37Performance Profiles

Page 2 sur 3file:///Users/pschaus/Documents/pageperso/assets/publi/performance-profile-ct/tablect/index.html

10

Min. Baseline Metric 

1000

Min. Unsolved Metric 

1000000





2.0 4.0 8.0
τ ( time )

1.0 10
0

10

20

30

40

50

60

70

80

90

100

%
 in

st
an

ce

0

100
CT CTI CTR

 Download  Data
Fig. 5: Performance Profiles with dynamic (CT), recomputation (CTR) and
incremental (CTI) strategies.



Speedup CTI CTR Best

average 1.09 1.46 1.02
min 0.44 0.53 0.44
max 3.23 4.39 1.96
std 0.38 0.65 0.27

Table 2: Speedup analysis of the two static variants over CT.

As can be seen from both the performance profiles and the speedup table, the
dynamic version using the resetting operations as introduced in [26] dominates
the static ones. The average speedup is around 9% over CTI and 46% over CTR.

Contradiction with Previous Results. In [22], AC5TCRecomp was presented as
being competitive with STR2. When we analyzed the code3 of STR2 used in
[22], it appeared that STR2 was implemented in Comet using built-in sets (trig-
gering the garbage collection of Comet). We thus believe that the results and
conclusions in [22] may over-penalize the performance of STR2. Our results also
somehow contradicts the results in [26] where STR3 and STR2 were dominated
by MDD4R and GAC4R. When analyzing the performance of the implementa-
tion of STR2 and STR3 used in [26] with or-tools, it appears that it is not as
competitive as that in AbsCon (sometimes slower by a factor of 3). The results
presented in [26] may thus also over-penalize the performances of STR2 and
STR3.

One additional contribution of this work is a fined-tuned implementation
of the best filtering algorithms for table constraints. The implementation of all
these algorithms in OscaR was optimized, and checked to be close in performance
to the ones by the original authors. For CT, STR2 and STR3, a comparison
was made with AbsCon, and for CT, MDD4R and GAC4R, a comparison was
made with or-tools. Our implementation required a development effort of 10
man-months in order to obtain an efficient implementation of each algorithm.
It involved the expertise of several OscaR developers and a deep analysis of
the existing implementations in AbsCon and or-tools. The implementation of all
table algorithms used in this paper is open-source and available in OscaR release
3.1.0.

8 Conclusion

In this paper, we have shown that Compact-Table (CT) is a robust algorithm
that clearly dominates state-of-the-art propagators for table constraints. CT ben-
efits from well-tried techniques: bitwise operations, residual supports, tabular re-
duction and resetting operations. We believe that CT can be easily implemented
using the reversible sparse bit-set data structure.
3 available at http://becool.info.ucl.ac.be

http://becool.info.ucl.ac.be
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