Skip to main content

Learning Parameters for the Sequence Constraint from Solutions

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9892))

Abstract

This paper studies the problem of learning parameters for global constraints such as Sequence from a small set of positive examples. The proposed technique computes the probability of observing a given constraint in a random solution. This probability is used to select the more likely constraint in a list of candidates. The learning method can be applied to both soft and hard constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The benchmark is available upon request to the authors.

References

  1. Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Math. Comput. Model. 20(12), 97–123 (1994)

    Article  MATH  Google Scholar 

  2. Beldiceanu, N., Simonis, H.: A constraint seeker: finding and ranking global constraints from examples. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 12–26. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–157. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N., Quimper, C.G., Walsh, T.: Constraint acquisition via partial queries. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 475–481. AAAI Press (2013)

    Google Scholar 

  5. Bessière, C., Coletta, R., Koriche, F., O’Sullivan, B.: A SAT-based version space algorithm for acquiring constraint satisfaction problems. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 23–34. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: Acquiring constraint networks using a sat-based version space algorithm. In: Proceedings of the 21st National Conference on Artificial Intelligence, no. 2, pp. 1565–1568. AAAI Press (2006)

    Google Scholar 

  7. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Quimper, C.-G., Walsh, T.: Reformulating global constraints: the Slide and Regular constraints. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS (LNAI), vol. 4612, pp. 80–92. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artificial Intelligence (2015, In Press)

    Google Scholar 

  9. Brand, S., Narodytska, N., Quimper, C.-G., Stuckey, P., Walsh, T.: Encodings of the sequence constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 210–224. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Coletta, R., Bessiere, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., Quinqueton, J.: Constraint acquisition as semi-automatic modeling. In: Proceedings of the 23rd SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence (AI 2003), pp. 111–124. Springer, London (2004)

    Google Scholar 

  11. van Hoeve, W.-J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: Revisiting the sequence constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 620–634. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Levitin, A.: Introduction to the Design and Analysis of Algorithms. Pearson Education, Newmarket (2011)

    Google Scholar 

  13. O’Connell, S., O’Sullivan, B., Freuder, E.C.: A study of query generation strategies for interactive constraint acquisition. In: Bessière, C. (ed.) Applications and Science in Soft Computing. LNCS, vol. 4741, pp. 225–232. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Pesant, G.: Counting solutions of csps: a structural approach. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 260–265. Morgan Kaufmann Publishers Inc. (2005)

    Google Scholar 

  16. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Proceedings of the 13th National Conference on Artificial Intelligence (AAAI 1996), vol. 1, pp. 209–215. AAAI Press (1996)

    Google Scholar 

  17. Ross, S.M.: Introduction to Probability Models. Elsevier, Oxford (2014)

    MATH  Google Scholar 

  18. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC 2012), pp. 887–898. ACM (2012)

    Google Scholar 

  19. Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered search heuristics. Constraints 14(3), 392–413 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Émilie Picard-Cantin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Picard-Cantin, É., Bouchard, M., Quimper, CG., Sweeney, J. (2016). Learning Parameters for the Sequence Constraint from Solutions. In: Rueher, M. (eds) Principles and Practice of Constraint Programming. CP 2016. Lecture Notes in Computer Science(), vol 9892. Springer, Cham. https://doi.org/10.1007/978-3-319-44953-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44953-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44952-4

  • Online ISBN: 978-3-319-44953-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics