Abstract
This paper studies the problem of learning parameters for global constraints such as Sequence from a small set of positive examples. The proposed technique computes the probability of observing a given constraint in a random solution. This probability is used to select the more likely constraint in a list of candidates. The learning method can be applied to both soft and hard constraints.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The benchmark is available upon request to the authors.
References
Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Math. Comput. Model. 20(12), 97–123 (1994)
Beldiceanu, N., Simonis, H.: A constraint seeker: finding and ranking global constraints from examples. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 12–26. Springer, Heidelberg (2011)
Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–157. Springer, Heidelberg (2012)
Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N., Quimper, C.G., Walsh, T.: Constraint acquisition via partial queries. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 475–481. AAAI Press (2013)
Bessière, C., Coletta, R., Koriche, F., O’Sullivan, B.: A SAT-based version space algorithm for acquiring constraint satisfaction problems. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 23–34. Springer, Heidelberg (2005)
Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: Acquiring constraint networks using a sat-based version space algorithm. In: Proceedings of the 21st National Conference on Artificial Intelligence, no. 2, pp. 1565–1568. AAAI Press (2006)
Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Quimper, C.-G., Walsh, T.: Reformulating global constraints: the Slide and Regular constraints. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS (LNAI), vol. 4612, pp. 80–92. Springer, Heidelberg (2007)
Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artificial Intelligence (2015, In Press)
Brand, S., Narodytska, N., Quimper, C.-G., Stuckey, P., Walsh, T.: Encodings of the sequence constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 210–224. Springer, Heidelberg (2007)
Coletta, R., Bessiere, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., Quinqueton, J.: Constraint acquisition as semi-automatic modeling. In: Proceedings of the 23rd SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence (AI 2003), pp. 111–124. Springer, London (2004)
van Hoeve, W.-J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: Revisiting the sequence constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 620–634. Springer, Heidelberg (2006)
Levitin, A.: Introduction to the Design and Analysis of Algorithms. Pearson Education, Newmarket (2011)
O’Connell, S., O’Sullivan, B., Freuder, E.C.: A study of query generation strategies for interactive constraint acquisition. In: Bessière, C. (ed.) Applications and Science in Soft Computing. LNCS, vol. 4741, pp. 225–232. Springer, Heidelberg (2004)
Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)
Pesant, G.: Counting solutions of csps: a structural approach. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 260–265. Morgan Kaufmann Publishers Inc. (2005)
Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Proceedings of the 13th National Conference on Artificial Intelligence (AAAI 1996), vol. 1, pp. 209–215. AAAI Press (1996)
Ross, S.M.: Introduction to Probability Models. Elsevier, Oxford (2014)
Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC 2012), pp. 887–898. ACM (2012)
Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered search heuristics. Constraints 14(3), 392–413 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Picard-Cantin, É., Bouchard, M., Quimper, CG., Sweeney, J. (2016). Learning Parameters for the Sequence Constraint from Solutions. In: Rueher, M. (eds) Principles and Practice of Constraint Programming. CP 2016. Lecture Notes in Computer Science(), vol 9892. Springer, Cham. https://doi.org/10.1007/978-3-319-44953-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-44953-1_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44952-4
Online ISBN: 978-3-319-44953-1
eBook Packages: Computer ScienceComputer Science (R0)