Abstract
In recent years, a number of recommendation algorithms have been proposed to help learners find suitable learning resources on-line. Next to user-centered evaluations, offline-datasets have been used to investigate new recommendation algorithms or variations of collaborative filtering approaches. However, a more extensive study comparing a variety of recommendation strategies on multiple TEL datasets is missing. In this work, we contribute with a data-driven study of recommendation strategies in TEL to shed light on their suitability for TEL datasets. To that end, we evaluate six state-of-the-art recommendation algorithms for tag and resource recommendations on six empirical datasets: a dataset from European Schoolnets TravelWell, a dataset from the MACE portal, which features access to meta-data-enriched learning resources from the field of architecture, two datasets from the social bookmarking systems BibSonomy and CiteULike, a MOOC dataset from the KDD challenge 2015, and Aposdle, a small-scale workplace learning dataset. We highlight strengths and shortcomings of the discussed recommendation algorithms and their applicability to the TEL datasets. Our results demonstrate that the performance of the algorithms strongly depends on the properties and characteristics of the particular dataset. However, we also find a strong correlation between the average number of users per resource and the algorithm performance. A tag recommender evaluation experiment reveals that a hybrid combination of a cognitive-inspired and a popularity-based approach consistently performs best on all TEL datasets we utilized in our study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Drachsler, H., Verbert, K., Santos, O.C., Manouselis, N.: Panorama of recommender systems to support learning. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 421–451. Springer, Heidelberg (2015)
Khribi, M.K., Jemni, M., Nasraoui, O.: Recommendation systems for personalized technology-enhanced learning. In: Kinshuk, Huang, R. (eds.) Ubiquitous Learning Environments and Technologies, pp. 159–180. Springer, Heidelberg (2015)
Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., Koper, R.: Recommender systems in technology enhanced learning. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 387–415. Springer, Heidelberg (2011)
Verbert, K., Manouselis, N., Drachsler, H., Duval, E.: Dataset-driven research to support learning and knowledge analytics. Educ. Technol. Soc. 15(3), 133–148 (2012)
Verbert, K., Drachsler, H., Manouselis, N., Wolpers, M., Vuorikari, R., Duval, E.: Dataset-driven research for improving recommender systems for learning. In: Proceedings of LAK 2011, pp. 44–53. ACM (2011)
Fazeli, S., Loni, B., Drachsler, H., Sloep, P.: Which recommender system can best fit social learning platforms? In: Rensing, C., de Freitas, S., Ley, T., Muñoz-Merino, P.J. (eds.) EC-TEL 2014. LNCS, vol. 8719, pp. 84–97. Springer, Heidelberg (2014)
Niemann, K., Wolpers, M.: Usage context-boosted filtering for recommender systems in TEL. In: Hernández-Leo, D., Ley, T., Klamma, R., Harrer, A. (eds.) EC-TEL 2013. LNCS, vol. 8095, pp. 246–259. Springer, Heidelberg (2013)
Manouselis, N., Vuorikari, R., Van Assche, F.: Collaborative recommendation of e-learning resources: an experimental investigation. J. Comput. Assist. Learn. 26(4), 227–242 (2010)
Bateman, S., Brooks, C., Mccalla, G., Brusilovsky, P.: Applying collaborative tagging to e-learning. In: Proceedings WWW 2007 (2007)
Kuhn, A., McNally, B., Schmoll, S., Cahill, C., Lo, W.-T., Quintana, C., Delen, I.: How students find, evaluate and utilize peer-collected annotated multimedia data in science inquiry with Zydeco. In: Proceedings of SIGCHI 2012, pp. 3061–3070. ACM (2012)
Klašnja-Milićević, A., Ivanović, M., Nanopoulos, A.: Recommender systems in e-learning environments: a survey of the state-of-the-art and possible extensions. Artif. Intell. Rev. 44(4), 571–604 (2015)
Manouselis, N., Drachsler, H., Verbert, K., Duval, E.: Recommender Systems for Learning. Springer, New York (2012)
Erdt, M., Fernandez, A., Rensing, C.: Evaluating recommender systems for technology enhanced learning: a quantitative survey. IEEE Trans. Learn. Technol. 8(4), 326–344 (2015)
Lohmann, S., Thalmann, S., Harrer, A., Maier, R.: Learner-generated annotation of learning resources-lessons from experiments on tagging. J. Univ. Comput. Sci. 304, 312 (2007)
Diaz-Aviles, E., Fisichella, M., Kawase, R., Nejdl, W., Stewart, A.: Unsupervised auto-tagging for learning object enrichment. In: Kloos, C.D., Gillet, D., Crespo García, R.M., Wild, F., Wolpers, M. (eds.) EC-TEL 2011. LNCS, vol. 6964, pp. 83–96. Springer, Heidelberg (2011)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Niemann, K.: Automatic tagging of learning objects based on their usage in web portals. In: Conole, G., Klobučar, T., Rensing, C., Konert, J., Lavoué, E. (eds.) Design for Teaching and Learning in a Networked World, vol. 9307, pp. 240–253. Springer, Heidelberg (2015)
Kowald, D., Lex, E.: Evaluating tag recommender algorithms in real-world folksonomies: a comparative study. In: Proceedings of RecSys 2015, pp. 265–268. ACM (2015)
Seitlinger, P., Kowald, D., Kopeinik, S., Hasani-Mavriqi, I., Ley, T., Lex, E.: Attention please! a hybrid resource recommender mimicking attention-interpretation dynamics. In: Proceedings of International World Wide Web Conferences Steering Committee, WWW 2015, pp. 339–345 (2015)
Trattner, C., Kowald, D., Seitlinger, P., Kopeinik, S., Ley, T.: Modeling activation processes in human memory to predict the use of tags in social bookmarking systems. J. Web Sci. 2(1), 1–16 (2016)
Kowald, D., Lacic, E., Trattner, C.: Tagrec: towards a standardized tagrecommender benchmarking framework. In: Proceedings of HT 2014. ACM, New York (2014)
Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in Folksonomies. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 506–514. Springer, Heidelberg (2007)
Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)
Marinho, L.B., Schmidt-Thieme, L.: Collaborative tag recommendations. In: Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds.) Data Analysis, Machine Learning and Applications, pp. 533–540. Springer, Heidelberg (2008)
Gemmell, J., Schimoler, T., Ramezani, M., Christiansen, L., Mobasher, B.: Improving folkrank with item-based collaborative filtering. In: Recommender Systems & the Social Web (2009)
Basilico, J., Hofmann, T.: Unifying collaborative and content-based filtering. In: Proceedings of ICML 2004, p. 9. ACM (2004)
Friedrich, M., Niemann, K., Scheffel, M., Schmitz, H.-C., Wolpers, M.: Object recommendation based on usage context. Educ. Technol. Soc. 10(3), 106–121 (2007)
Niemann, K., Wolpers, M.: Creating usage context-based object similarities to boost recommender systems in technology enhanced learning. IEEE Trans. Learn. Technol. 8(3), 274–285 (2015)
Kowald, D., Kopeinik, S., Seitlinger, P., Ley, T., Albert, D., Trattner, C.: Refining frequency-based tag reuse predictions by means of time and semantic context. In: Atzmueller, M., Chin, A., Scholz, C., Trattner, C. (eds.) MUSE/MSM 2013, LNAI 8940. LNCS, vol. 8940, pp. 55–74. Springer, Heidelberg (2015)
Anderson, J.R., Schooler, L.J.: Reflections of the environment in memory. Psychol. Sci. 2(6), 396–408 (1991)
Love, B.C., Medin, D.L., Gureckis, T.M.: Sustain: a network model of category learning. Psychol. Rev. 111(2), 309 (2004)
Benchmark folksonomy data from bibsonomy, Knowledge and Data Engineering Group. University of Kassel, 2013/2015. http://www.kde.cs.uni-kassel.de/bibsonomy/dumps
Stefaner, M., Dalla Vecchia, E., Condotta, M., Wolpers, M., Specht, M., Apelt, S., Duval, E.: MACE – enriching architectural learning objects for experience multiplication. In: Duval, E., Klamma, R., Wolpers, M. (eds.) EC-TEL 2007. LNCS, vol. 4753, pp. 322–336. Springer, Heidelberg (2007)
Vuorikari, R., Massart, D.: Datatel challenge: European schoolnet’s travel well dataset. In: Proceedings of RecSysTEL 2010 (2010)
Beham, G., Stern, H., Lindstaedt, S.: Aposdle-ds a dataset from the Aposdle work integrated learning system. In: Proceedings of RecSysTEL 2010 (2010)
Marinho, L.B., Hotho, A., Jäschke, R., Nanopoulos, A., Rendle, S., Schmidt-Thieme, L., Stumme, G., Symeonidis, P.: Recommender Systems for Social Tagging Systems. Springer, New York (2012)
Sakai, T.: On the reliability of information retrieval metrics based on graded relevance. Inf. Process. Manage. 43(2), 531–548 (2007)
Acknowledgments
We would like to gratefully acknowledge Katja Niemann who provided us with the MACE and TravelWell datasets, as well as the organizers of KDD Cup 2015 and XuetangX for making the KDD dataset available. This work is funded by the Know-Center, the EU-IP Learning Layers (Grant Agreement: 318209) and the EU-IP AFEL (Grant Agreement: 687916). The Know-Center is funded within the Austrian COMET Program under the auspices of the Austrian Ministry of Transport, Innovation and Technology, the Austrian Ministry of Economics and Labor and by the State of Styria.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Kopeinik, S., Kowald, D., Lex, E. (2016). Which Algorithms Suit Which Learning Environments? A Comparative Study of Recommender Systems in TEL. In: Verbert, K., Sharples, M., Klobučar, T. (eds) Adaptive and Adaptable Learning. EC-TEL 2016. Lecture Notes in Computer Science(), vol 9891. Springer, Cham. https://doi.org/10.1007/978-3-319-45153-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-45153-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45152-7
Online ISBN: 978-3-319-45153-4
eBook Packages: Computer ScienceComputer Science (R0)