Skip to main content

Classification-Based Causality Detection in Time Series

  • Conference paper
  • First Online:
Machine Learning and Interpretation in Neuroimaging (MLINI 2013, MLINI 2014)

Abstract

Brain effective connectivity aims to detect causal interactions between distinct brain units and it can be studied through the analysis of magneto/electroencephalography (M/EEG) signals. Methods to evaluate effective connectivity belong to the large body of literature related to detecting causal interactions between multivariate autoregressive (MAR) data, a field of signal processing. Here, we reformulate the problem of causality detection as a supervised learning task and we propose a classification-based approach for it. Our solution takes advantage of the MAR model by generating a labeled data set that contains trials of multivariate signals for each possible configuration of causal interactions. Through the definition of a proper feature space, a classifier is trained to identify the causality structure within each trial. As evidence of the efficacy of the proposed method, we report both the cross-validated results and the details of our submission to the causality detection competition of Biomag2014, where the method reached the 2nd place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.biomag2014.org/competition.shtml, see “Challenge 2: Causality Challenge”.

  2. 2.

    The diagonal is not relevant since by definition the time series are autoregressive.

  3. 3.

    Excluding the trial-specific parameter \(\gamma \) which was randomly uniformly generated for each trail.

  4. 4.

    http://nipy.org/nitime.

  5. 5.

    http://scikit-learn.org.

References

  1. Baccalà, L.A., Sameshima, K.: Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 84(6), 463–474 (2001). http://view.ncbi.nlm.nih.gov/pubmed/11417058

    Article  MATH  Google Scholar 

  2. Baccalà, L.A., Sameshima, K., Ballester, G., Do Valle, A.C., Timo-Iaria, C.: Studying the interaction between brain structures via directed coherence and granger causality. Appl. Signal Process. 5, 40–48 (1998). http://www.lcs.poli.usp.br/~baccala/pdc/papers/asp.pdf

    Google Scholar 

  3. Brookes, M.J., Woolrich, M.W., Barnes, G.R.: Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage. NeuroImage 63(2), 910–920 (2012). http://view.ncbi.nlm.nih.gov/pubmed/22484306

    Article  Google Scholar 

  4. Butler, S.R., Glass, A.: Asymmetries in the electroencephalogram associated with cerebral dominance. Electroencephalogr. Clin. Neurophysiol. 36(5), 481–491 (1974). http://view.ncbi.nlm.nih.gov/pubmed/4135345

    Article  Google Scholar 

  5. Faes, L., Erla, S., Nollo, G.: Measuring connectivity in linear multivariate processes: definitions, interpretation, and practical analysis. Comput. Math. Methods Med. 2012, 1–18 (2012). doi:10.1155/2012/140513

    MathSciNet  MATH  Google Scholar 

  6. Freiwald, W.A., Valdes, P., Bosch, J., Biscay, R., Jimenez, J.C., Rodriguez, L.M., Rodriguez, V., Kreiter, A.K., Singer, W.: Testing non-linearity and directedness of interactions between neural groups in the macaque inferotemporal cortex. J. Neurosci. Methods 94(1), 105–119 (1999). http://view.ncbi.nlm.nih.gov/pubmed/10638819

    Article  Google Scholar 

  7. Friston, K.J.: Functional and effective connectivity: a review. Brain Connectivity 1(1), 13–36 (2011). doi:10.1089/brain.2011.0008

    Article  MathSciNet  Google Scholar 

  8. Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3), 424–438 (1969). doi:10.2307/1912791

    Article  MathSciNet  Google Scholar 

  9. Hlavackovaschindler, K., Palus, M., Vejmelka, M., Bhattacharya, J.: Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 441(1), 1–46 (2007). doi:10.1016/j.physrep.2006.12.004

    Article  Google Scholar 

  10. Horwitz, B.: The elusive concept of brain connectivity. NeuroImage 19(2 Pt 1), 466–470 (2003). http://view.ncbi.nlm.nih.gov/pubmed/12814595

    Article  Google Scholar 

  11. Kamiński, M., Ding, M., Truccolo, W.A., Bressler, S.L.: Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance. Biol. Cybern. 85(2), 145–157 (2001). http://view.ncbi.nlm.nih.gov/pubmed/11508777

    Article  MATH  Google Scholar 

  12. Kaminski, M.J., Blinowska, K.J.: A new method of the description of the information flow in the brain structures. Biol. Cybern. 65(3), 203–210 (1991). doi:10.1007/bf00198091

    Article  MATH  Google Scholar 

  13. Papana, A., Kugiumtzis, D., Larsson, P.G.: Reducing the bias of causality measures. Phys. Rev. E 83(3) (2011). http://dx.doi.org/10.1103/physreve.83.036207

  14. Pereda, E., Quiroga, R.Q.Q., Bhattacharya, J.: Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 77(1–2), 1–37 (2005). doi:10.1016/j.pneurobio.2005.10.003

    Article  Google Scholar 

  15. Sakkalis, V.: Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput. Biol. Med. 41(12), 1110–1117 (2011). doi:10.1016/j.compbiomed.2011.06.020

    Article  Google Scholar 

  16. Winterhalder, M., Schelter, B., Hesse, W., Schwab, K., Leistritz, L., Klan, D., Bauer, R., Timmer, J., Witte, H.: Comparison of linear signal processing techniques to infer directed interactions in multivariate neural systems. Sig. Process. 85(11), 2137–2160 (2005). doi:10.1016/j.sigpro.2005.07.011

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Benozzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Benozzo, D., Olivetti, E., Avesani, P. (2016). Classification-Based Causality Detection in Time Series. In: Rish, I., Langs, G., Wehbe, L., Cecchi, G., Chang, Km., Murphy, B. (eds) Machine Learning and Interpretation in Neuroimaging. MLINI MLINI 2013 2014. Lecture Notes in Computer Science(), vol 9444. Springer, Cham. https://doi.org/10.1007/978-3-319-45174-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45174-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45173-2

  • Online ISBN: 978-3-319-45174-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics