Abstract
The paper presents a modification of Random Forest approach to the indoor localization problem. The localization solution is based on RSS (Received Signal Strength) from multiple sources of Wi–Fi signal. We analyze two localization models. The first one is built using a straightforward application of a random forest method. The second model is a combination of localization models built for each Access Point from the building’s network using similar technique (Random Forests) as for the first model. The modification proposed in the second model gives us a substantial accuracy improvement when compared to the first model. We test also the solution against a network malfunction when some Access Points are turned off as the malfunction immunity is another important feature of the presented localization solution.
The research is supported by the National Centre for Research and Development, grant No PBS2/B3/24/2014, application No 208921.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Dawes, B., Chin, K.W.: A comparison of deterministic and probabilistic methods for indoor localization. J. Syst. Softw. 84, 442–451 (2011)
Gallagher, T., Tan, Y.K., Li, B., Dempster, A.G.: Trials of commercial wi-fi positioning systems for indoor and urban canyons. In: IGNSS Symposium on GPS/GNSS, Gold Coast, Australia (2009)
Górak, R., Luckner, M.: Malfunction immune Wi–Fi localisation method. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawinski, B. (eds.) ICCCI 2015. LNCS, vol. 9329, pp. 328–337. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24069-5_31
Grzenda, M.: On the prediction of floor identification credibility in RSS-based positioning techniques. In: Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn, M., Jonker, C.M., Treur, J. (eds.) IEA/AIE 2013. LNCS, vol. 7906, pp. 610–619. Springer, Heidelberg (2013)
Karwowski, J., Okulewicz, M., Legierski, J.: Application of particle swarm optimization algorithm to neural network training process in the localization of the mobile terminal. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds.) EANN 2013, Part I. CCIS, vol. 383, pp. 122–131. Springer, Heidelberg (2013)
Kjargaard, M.B.: Indoor location fingerprinting with heterogeneous clients. Pervasive Mob. Comput. 7, 31–43 (2011)
Korbel, P., Wawrzyniak, P., Grabowski, S., Krasinska, D.: LocFusion API - programming interface for accurate multi-source mobile terminal positioning. In: Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 819–823, September 2013
Okulewicz, M., Bodzon, D., Kozak, M., Piwowarski, M., Tenderenda, P.: Indoor localization of a moving mobile terminal by an enhanced particle filter method. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 512–522. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39384-1_45
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Górak, R., Luckner, M. (2016). Modified Random Forest Algorithm for Wi–Fi Indoor Localization System. In: Nguyen, N., Iliadis, L., Manolopoulos, Y., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2016. Lecture Notes in Computer Science(), vol 9876. Springer, Cham. https://doi.org/10.1007/978-3-319-45246-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-45246-3_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45245-6
Online ISBN: 978-3-319-45246-3
eBook Packages: Computer ScienceComputer Science (R0)