Skip to main content

Measuring the Quality of Models with Respect to the Underlying System: An Empirical Study

  • Conference paper
  • First Online:
Business Process Management (BPM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9850))

Included in the following conference series:

Abstract

Fitness and precision are two widely studied criteria to determine the quality of a discovered process model. These metrics measure how well a model represents the log from which it is learned. However, often the goal of discovery is not to represent the log, but the underlying system. This paper discusses the need to explicitly distinguish between a log and system perspective when interpreting the fitness and precision of a model. An empirical analysis was conducted to investigate whether the existing log-based fitness and precision measures are good estimators for system-based metrics. The analysis reveals that incompleteness and noisiness of event logs significantly impact fitness and precision measures. This makes them biased estimators of a model’s ability to represent the true underlying process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this paper, the simplicity dimension will not be taken into account, as it is not directly related to the behaviour of the discovered model.

References

  1. van der Aalst, W.M.P.: Process mining: discovery, conformance and enhancement of business processes. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  2. van der Aalst, W.M.P.: Mediating between modeled and observed behavior: the quest for the Right process. In: IEEE Computing Society, pp. 31–43 (2013)

    Google Scholar 

  3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 2(2), 182–192 (2012)

    Google Scholar 

  4. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.: Alignment based precision checking. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 137–149. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 467–483. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Baier, C., Katoen, J.P., et al.: Principles of Model Checking, vol. 26202649. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  7. vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J.B., Baesens, B.: Determining process model precision and generalization with weighted artificial negative events. IEEE Trans. Knowl. Data Eng. 26(8), 1877–1889 (2014)

    Article  Google Scholar 

  8. vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J., Baesens, B.: A Comprehensive Benchmarking Framework (CoBeFra) for conformance analysis between procedural process models and event logs in ProM. In: 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 254–261. IEEE (2013)

    Google Scholar 

  9. Buijs, J.: Flexible evolutionary algorithms for mining structured process models. Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven (2014)

    Google Scholar 

  10. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision, generalization and simplicity in process discovery. In: Meersman, R. (ed.) OTM 2012, Part I. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Cheng, H.J., Kumar, A.: Process mining on noisy logs can log sanitization help to improve performance? Decis. Support Syst. 79, 138–149 (2015)

    Article  Google Scholar 

  12. Cook, J.E., Wolf, A.L.: Software process validation: quantitatively measuring the correspondence of a process to a model. ACM Trans. Softw. Eng. Methodol. (TOSEM) 8(2), 147–176 (1999)

    Article  Google Scholar 

  13. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst. 37(7), 654–676 (2012)

    Article  Google Scholar 

  14. Di Ciccio, C., Mecella, M., Mendling, J.: The effect of noise on mined declarative constraints. In: Ceravolo, P., Accorsi, R., Cudre-Mauroux, P. (eds.) SIMPDA 2013. LNBIP, vol. 203, pp. 1–24. Springer, Heidelberg (2015)

    Google Scholar 

  15. Folino, F., Greco, G., Guzzo, A., Pontieri, L.: Discovering expressive process models from noised log data. In: Proceedings of the 2009 International Database Engineering and Applications Symposium, pp. 162–172. ACM (2009)

    Google Scholar 

  16. Janssenswillen, G., Depaire, B., Jouck, T.: Calculating the number of unique paths in a block-structured process model. In: Algorithms and Theories for the Analysis of Event Data (2016)

    Google Scholar 

  17. Jouck, T., Depaire, B.: Generating artificial data for empirical analysis of process discovery algorithms: a process tree and log generator. Technical report, Universiteit Hasselt, Universiteit Hasselt, March 2016

    Google Scholar 

  18. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013 Workshops. LNBIP, vol. 171, pp. 66–78. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  19. de Medeiros, A.K.A.: Genetic process mining. Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven (2006)

    Google Scholar 

  20. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

    Article  Google Scholar 

  21. Rozinat, A., De Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: Towards an evaluation framework for process mining algorithms. In: Beta, Research School for Operations Management and Logistics (2007)

    Google Scholar 

  22. Weber, P., Bordbar, B., Tiňo, P., Majeed, B.: A framework for comparing process mining algorithms. In: GCC Conference and Exhibition (GCC), 2011 IEEE, pp. 625–628. IEEE (2011)

    Google Scholar 

  23. Weijters, A., van der Aalst, W.M.P.: Rediscovering workflow models from event-based data. In: Proceedings of the 11th Dutch-Belgian Conference on Machine Learning (Benelearn 2001), pp. 93–100. Citeseer (2001)

    Google Scholar 

  24. Weijters, A., van der Aalst, W.M.P., De Medeiros, A.K.A.: Process mining with the heuristics miner-algorithm. Technische Universiteit Eindhoven, Technical report WP 166, pp. 1–34 (2006)

    Google Scholar 

  25. Yang, H., van Dongen, B., ter Hofstede, A., Wynn, M., Wang, J.: Estimating completeness of event logs. BPM Center Report, 12 April 2012

    Google Scholar 

Download references

Acknowledgments

The computational resources and services used in this work for both process discovery and process conformance tasks were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation - Flanders (FWO) and the Flemish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Janssenswillen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Janssenswillen, G., Jouck, T., Creemers, M., Depaire, B. (2016). Measuring the Quality of Models with Respect to the Underlying System: An Empirical Study. In: La Rosa, M., Loos, P., Pastor, O. (eds) Business Process Management. BPM 2016. Lecture Notes in Computer Science(), vol 9850. Springer, Cham. https://doi.org/10.1007/978-3-319-45348-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45348-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45347-7

  • Online ISBN: 978-3-319-45348-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics