
Context-Awareness to improve Anomaly Detection in

Dynamic Service Oriented Architectures

Tommaso Zoppi, Andrea Ceccarelli, Andrea Bondavalli

University of Florence, Viale Morgagni 65, Firenze, Italy

{tommaso.zoppi, andrea.ceccarelli, bondavalli}@unifi.it

Abstract. Revealing anomalies to support error detection in software-

intensive systems is a promising approach when traditional detection

mechanisms are considered inadequate or not applicable. The core of

anomaly detection lies in the definition of the expected behavior of the ob-

served system. Unfortunately, the behavior of complex and dynamic sys-

tems is particularly difficult to understand. To improve the accuracy of

anomaly detection in such systems, in this paper we present a context-

aware anomaly detection framework which acquires information on the

running services to calibrate the anomaly detection. To cope with system

dynamicity, our framework avoids instrumenting probes into the applica-

tion layer of the observed system monitoring multiple underlying layers in-

stead. Experimental evaluation shows that the detection accuracy is in-

creased considerably through context-awareness and multiple layers moni-

toring. Results are compared to state-of-the-art anomaly detectors exer-

cised in demanding more static contexts.

Keywords: Anomaly Detection · Monitoring · Service Oriented Architecture ·

SOA · Context Aware · Multi-Layer

1 Introduction

Complex software-intensive systems include several different components, software
layers and services. Often, these systems are characterized by a dynamic behavior
related to changes in their services, connections or components themselves. In par-
ticular, Service-Oriented Architectures (SOAs) may aggregate proprietary as well as
Off-The-Shelf (OTS) services, hiding their implementation details. It is a matter of
fact that SOA dynamicity and information hiding obstacle monitoring solutions that
directly observe the SOA services [19]. This collides with the increasing interest in
using these systems for (safety) critical applications, and raises a call for adequate
solutions to monitoring and error detection [1], [21].

Anomaly detection aims to find patterns in monitored data that do not conform to
the expected behavior [1]. Such patterns are changes in the trends of indicators such
as memory usage or network data exchange characterizing the behavior of the system
caused by specific and non-random factors. As an example, anomalies can be due to a
system overload, adversarial intrusion attempts, malware activity or manifestation of

errors. Anomaly detection was proved [7] to be effective, highlighting anomalies and
timely triggering reaction strategies to finally improve system safety or security.

Investigating dynamic contexts makes the definition of normal (and consequently
anomalous) behavior a complex challenge: currently, there are no clear state-of-the-
art answers on applying anomaly detection in highly dynamic contexts. Focusing on
SOAs, anomaly detection usually requires a reconfiguration step to define the nomi-
nal behavior when services are updated, added or removed from the SOA [1]. It fol-
lows that anomaly detectors may be reconfigured frequently, reducing their effective-
ness and with a negative impact on the SOA execution.

In this paper we present an anomaly detection framework that aims to tackle the
challenges above. We tune the monitoring system to observe the underlying layers
(e.g., operating system, middleware and network) instead of directly instrumenting
the services with monitoring probes. This allows detecting anomalies due to errors or
failures that manifest in the services without directly observing them [22]. Therefore,
this multi-layer approach turned out very suitable to cope with dynamicity of complex
systems, at the cost of a calibration time to reconfigure the parameters of the anomaly
detector when changes of the components of the complex system are detected. This
approach was previously proved effective on systems with reduced dynamicity re-
spect to complex systems [14], while experimental results showed that a more accu-
rate definition of the context was needed in highly dynamic systems [6] to improve
detection accuracy. In this study we consider knowledge of basic information on the
context - referred as context-awareness - that can be easily retrieved from integration
modules of SOAs. This knowledge helps defining more precisely the expected behav-
ior of the dynamic target system, resulting in more accurate definition of anomalies
and, consequently, a more effective anomaly detection process. In fact, our multi-
layer monitoring structure makes available a wide set of indicators, and the most rele-
vant ones for anomaly detection purposes are identified depending on the current
context. Consequently they are observed, with corresponding monitoring probes,
building time series that are analyzed for anomaly detection purposes.

Summarizing, our main findings are: i) describing how context-awareness on the
SOA services can be used to improve detection; ii) defining a methodology and the
associated framework for anomaly detection in dynamic contexts using context-
awareness; iii) structuring a multi-layer anomaly detection module observing operat-
ing system, middleware (Java Virtual Machine, JVM) and network layers, iv) as-
sessing the whole solution on a case study, showing the obtained detection accuracy,
which is presented using well-known metrics and v) compare our detection system
with state-of-the-art [2], [3], [14] solutions exercised in less dynamic contexts.

The paper is structured as follows. Section 2 motivates the use of context-
awareness, which is at the basis of our work. Section 3 describes the resulting anoma-
ly detection framework and the devised methodology. Section 4 presents the experi-
mental evaluation. State of the art on related approaches and comparison are explored
in Section 5. Section 6 concludes the paper.

2 Learning from the past

This work stems from studies by the same authors [14], [6] who devised multi-layer

anomaly detection [22] strategies to perform error detection using the Statistical Pre-

dictor and Safety Margin (SPS, [9]) algorithm. SPS is able to detect anomalies with-

out requiring offline training; this was proved to be very performing in less dynamic

contexts [14], where the authors applied SPS to detect the activation of software faults

in an Air Traffic Management (ATM) system. Observing only OS indicators, SPS

allowed implementing an anomaly detector which performed error detection with

high precision. Therefore we adapted this promising approach to work in a more dy-

namic context [6], where we instantiated the multi-layer anomaly detection strategy

on the prototype of the Secure! [8] SOA. The results achieved showed that analysing

such a dynamic system without adequate knowledge on its behavior reduces the effi-

ciency of the whole solution. Despite the observed data stream was rapidly processed,

we obtained a detection time - the time interval between the manifestation of the error

and its detection - of 40 seconds with a high number of false positives and negatives.

We explain these outcomes as follows. SPS detects changes in a stream of obser-

vations identifying variations with respect to a predicted trend: when an observation

does not comply with the predicted trend, an alert is raised. If the system has high

dynamicity due to frequent changes or updates of the system components, or due to

variations of user behavior or workload, such trend may be difficult to identify and

thus predict. Consequently, our ability in identifying anomalies is affected because

boundaries between normal and anomalous behavior cannot be defined properly.

2.1 Considering context-awareness

We previously highlighted the need of acquiring more information on the target sys-

tem, still maintaining the main benefits of the abovementioned approach. Consequent-

ly, we investigate which information on SOA services we can obtain in absence of

details on the services internals and without requiring user context (i.e., user profile,

user location). In SOAs, the different services share common information through an

Enterprise Service Bus (ESB, [15]) that is in charge of i) integrating and standardizing

common functionalities, and ii) collecting data about the services. This means that

static (e.g., services description available in Service Level Agreements - SLAs) or

runtime (e.g., the time instant a service is requested or replies, or the expected re-

sources usage) information can be retrieved using knowledge given by ESB. Conse-

quently, having access to the ESB provides knowledge on the set of generic services

running at any time t. We refer to this information as context-awareness of the con-

sidered SOA; note that we do not require information on the user context, contrary to

what is typically done in the state-of-the-art on context-awareness [16], [17].

We can exploit this information to define more precisely the boundaries between

normal and anomalous behavior of the SOA. For example, consider a user that in-

vokes a store file service at time t. We can combine context-awareness with infor-

mation on the usual behavior of the service, which here regards data transfer. There-

fore, if the store file service is invoked at time t, we expect the exchange of data dur-

ing almost the entire execution of the service. If we observe no data exchange, we can

reveal that something anomalous is happening.

2.2 Enhancing Detection Capabilities

Collect services information. Let us start from the example of the store file service.

Our objective is to characterize the normal behavior the service, building a fingerprint

of its usage. More in details, we need a description of the expected behavior of the

service, meaning that we need to describe the usual trend of the observed indicators

(examples of indicators are in Table 2 and Table 3) while the service is invoked. In

such a way, we can understand if the current observation complies or not with the

expectations. This information can be retrieved in a SOA by observing the ESB and

producing a new service fingerprint when the addition, update or removal of a service

is detected. In several cases it is also possible to obtain a static characterization of the

services looking at their SLA, where each service is defined from its owner or devel-

oper for the final user. We remark that we do not consider any assumption about the

services except their connection with the ESB: consequently, we can obtain services

information from any kind of service running in the SOA platform.

Integrate information in the anomaly detector. Summarizing, information about

the services can be obtained i) statically, looking at SLAs, ii) at runtime, invoking

services for testing purposes or iii) combining both approaches. In this paper we ex-

plore the second approach, discussing this choice in Section 3.2. This information

needs to be aggregated and maintained (e.g., in a database) together with the calculat-

ed statistical indexes (e.g., mean, median), whenever applicable, to support the anom-

aly detection solutions.

3 Description of the Anomaly Detection Framework

3.1 Architectural overview

In Figure 1 we depict a high level view of the framework. Starting from the upper left

part of the figure, the framework can be described as follows. The user executes a

workload, which is a sequence of invocations of SOA services hosted on the Target

Machine. In this machine probes are running, observing the indicators coming from 3

different system layers: i) OS, ii) middleware and iii) network. These probes collect

data, providing a snapshot of the target system composed by the observation of indi-

Fig 1. High-level view of the resulting multi-layer monitoring and anomaly detection framework

cators retrieved at a defined time instant. The probes forward the snapshot to the

communication handler, which encapsulates and sends the snapshot to the communi-

cation handler of the Detector Machine. Data is analyzed on a separate machine, the

Detector Machine (which includes a Complex Event Processor - CEP [18]). This al-

lows i) not being intrusive on the Target Machine, and ii) connecting more Target

Machines to the same Detector Machine (obviously the number of Target Machines is

limited by the computational resources of the Detector Machine). The communication

handler of the Detector Machine collects and sends these data to the monitor aggrega-

tor, which merges them with runtime information (e.g., list of service calls) obtained

from the ESB. This allows storing context-awareness information in the database.

Looking at runtime information, the monitor aggregator can detect changes in the

SOA and notify the administrator that up-to-date services information is needed to

appropriately tune the anomaly detector. The administrator is in charge of running

tests (test invocation) to gather novel information on such services.

The snapshots collected when SOA is opened to users are sent to the anomaly de-

tection module, which can query the database for services information and analyzes

each observed snapshot to detect anomalies. If an anomaly is detected, the system

administrator, which takes countermeasures and applies reaction strategies (which are

outside from the scope of this work and will not be elaborated further), is notified.

3.2 Methodology to exercise the framework

The framework is instantiated specifying i) the workload we expect will be exercised

on the target system, ii) the way (static/runtime) the administrator prefers to obtain

services information described in Section 2.2, iii) the monitored layers on the Target

Machine and the number of probes per layer, and iv) the number of preliminary runs

necessary to devise the detection strategy elaborated in Section 3.3. The methodology

is composed of two phases: Training the Anomaly Detector and Runtime Execution.

Training the Anomaly Detector. This phase is organized in 3 steps. In the first step,

services information characterizing the fingerprint of the investigated services can be

obtained statically (e.g., from SLA) or at runtime (through the test invocation in Fig-

ure 1). In our implementation, we chose this second option because it allows retriev-

ing accurate information on the trend of the individual indicators; static information

as SLA usually defines only general service characteristics and requirements.

In the second step, once services information is collected, preliminary runs using

the expected workload are executed, and the retrieved data – a time series for each

monitored indicator - are stored in the database. These data are complemented with

data collected conducting error injection campaigns, where errors are injected in one

of the SOA services, to witness the behavior of the Target Machine in such situations.

The service in which errors are injected may be a custom service devoted exclusively

to testing, allowing to modify its source code. This strategy can result particularly

useful when performing injections into the services that compose the target system is

not feasible (e.g., when services source code is not available as in OTS services).

In the third step, services information and preliminary runs data are used by the

anomaly detection module to tune its parameters, automatically choosing the configu-

ration that maximizes detection efficiency for the current SOA (see Section 3.3).

We remark that we figured out two ways of obtaining the data in the first two

steps: i) execute online tests before the user start working, or ii) copy the platform on

another virtual machine and execute the tests on the spare machine in a controlled

experimental environment. The first solution will force the user to wait until tests

complete (see Figure 2), and consequently may reduce the availability of the SOA to

the users. The second option requires additional resources to maintain and execute a

copy of the Target Machine. In the rest of the paper we considered the first option: we

collect context information through online tests before the SOA is opened to users.

The induced delays on service delivery are measured in Section 4.1.

In some cases, to avoid downtime, it may be considered to postpone the execution

of tests to low peak load periods such as at night. Obviously, delaying the execution

of the tests (instead of running them immediately after services changes) implies that

the anomaly detection module works with previous services information until the next

training phase. This services information is now out of date: it is easy to note that this

will negatively impact the accuracy of the anomaly detection module.

Runtime Execution. Once the anomaly detector is trained, the system is opened to

users. Monitor aggregator merges each snapshot observed by the probing system with

runtime information, and it sends them to the anomaly detection module. This module

provides a numeric anomaly score (see Section 3.3). If the score reaches a specified

threshold alpha, an anomaly alert is risen and the administrator is notified. If during

this phase a service update is detected, a new training phase is scheduled and it will

be executed depending on the policies defined by the administrator (see Figure 2).

3.3 Insights on the Anomaly Detection Module

Periodically (e.g., once per second), the monitor aggregator provides a snapshot of

the observed system, composed of the quantities retrieved from the indicators. For

each indicator, two quantities are sent: i) value: the current observation read by the

probes, and ii) diff: the difference among the current and previous value.

Fig. 2. Methodology: SOA hosted on target machine is available to users until a service update is detected

from the runtime information. In that case, the training phase starts collecting services information and
executing preliminary runs; the user needs to wait until it completes. Then the SOA is again available to users.

This allows building a set of anomaly checkers as follows. An anomaly checker is

assigned to the value or to the diff quantity of an indicator, i.e., two anomaly checkers

can be created for each indicators. More precisely, each anomaly checker observes a

specific time series made with the observations of the value or the diff quantity of a

given indicator. Each anomaly checker decides if the quantity of the indicator is

anomalous or normal following rules as described in the section below. The anomaly

score for an observed snapshot is built combining the individual outcomes of the

selected anomaly checkers; an anomaly is raised only if the alpha threshold is met.

Anomaly Checkers. For each indicator, we build three types of anomaly checkers:

 Historical: for a given indicator, this module compares the value or diff

quantity with the expectations defined in services information. If this quanti-

ty is outside of the interval defined by average ± standard deviation in ser-

vice information for that indicator, an anomaly is raised.

 SPS: for a given data series (value, diff) of an indicator, this module applies

an instance of the SPS algorithm described in [9], [14].

 Remote call: this checker observes the response time and the HTTP re-

sponse code for each service invocation. If the response code is not correct

(e.g., HTTP Success 2xx) or if the response time is not in the range of the

acceptability interval defined by services information, an alert is raised.

For example, let us consider a set of 50 indicators. We obtain 201 possible anoma-

ly checkers: 1 remote call checker and 200 anomaly checkers from the 50 indicators,

organized in 4 anomaly checkers for each indicator (historical on value/diff data se-

ries, SPS on value/diff data series). The checkers to be used are selected during the

training phase, analysing their scores for specified metrics (see below). As a result,

the most performing checkers are selected i) choosing the n checkers with the highest

score, or ii) considering checkers with a score greater than a threshold δ.

Specified Metrics. The anomaly checkers are evaluated during the training phase

using measures based on indexes representing the correct detections - true positives

(TP), true negatives (TN) - and the wrong ones i.e., missed detections (false nega-

tives, FN) or false detections (false positives, FP). More complex measures based on

the abovementioned ones are precision, recall and F-Score(β) [12]. Especially in the

F-Score(β), varying the parameter β it becomes possible to weight the precision w.r.t

the recall (note that F-Score(1) is referred as F-Measure). Considering that we are

targeting safety-critical systems, we prefer to reduce the amount of missed detections

(FN), even at the cost of a higher rate of FP. For this reason, we selected as reference

metric the F-Score(2), which considers the recall more relevant than the precision: the

F-Score(2) for each anomaly checker is computed, and checkers are selected accord-

ingly (choosing the n best, or those whose F-Score(2) > δ).

4 Experimental Evaluation

We describe the experimental evaluation of the framework. To the purposes of the

evaluation, we run an automatic controller that checks input data and manages the

communications among the different modules of the Target Machine and Detector

Machine. This facilitates the automatic

execution of the experimental campaigns

without requiring user intervention. All

data are available at [20].

4.1 Set-up of the Target and the

Detector Machine

We conducted an experimental campaign

using as target system one of the four virtual machines that host the Secure! crisis

management system [8], which is built on the Liferay [13] portal, and uses Liferay

services such as authentication mechanisms, file storage, calendar management. We

identified 11 different services that can be invoked by the Secure! users. To simulate a

set of possible user actions, we created the All Services workload calling a sequence

of services, with a time interval of 1 second and overall lasting approximately 85

seconds (see Table 1).

Target and Detector Machines are virtual machines that run on a rack server with

3 Intel Xeon E5-2620@ 2.00 GHz processors. The Target Machine runs the Secure!

prototype and it is instrumented with the probing system which reads 1 snapshot per

second. Following our methodology in Section 3.2, after defining the expected work-

load we execute tests to collect services information. In Table 1 we compute the time

required to obtain services information: we report the time needed to test a single

service and all the 11 services (All Tests). The execution of these tests forces the users

to wait until the SOA is available again. When the SOA has to be deployed for its first

time, this only implies that deploy is delayed to wait for the tests completion. Once

the SOA is deployed and available to users, it is expected that only few services will

be updated each time, requiring only specific tests and consequently only short peri-

ods of unavailability. Consequently, except for the time needed for the initial test of

all the services, the framework scales well also with a wider pool of services running

on the SOA.

Regarding the most relevant anomaly checkers, we set n = 20, meaning that the 20

best anomaly checkers are selected following the F-Score(2) metric. Finally, we set

alpha = 50%, meaning that an alert is raised if at least half of the anomaly checkers

detect an anomaly for the considered snapshot. We want to point out that we consid-

ered a basic setup for the monitored indicators, the best checkers and the alpha pa-

rameter. A more detailed sensitivity analysis exploring all the possible settings will be

performed as future work targeting the identification of the most performing setup of

these parameters for the scenario under investigation.

4.2 Experiments description

We inject the following errors: i) a memory consumption error (filling a Java

LinkedList), and ii) a wrong network usage (fetching HTML text data from an external

web page). We executed 60 preliminary runs in which we inject the memory con-

sumption error and other 60 in which we inject the network error in our services. The

validation experiments are organized as follows: in 40 runs we inject the memory

error, while in the other 40 runs the network error is injected, considering different

Table 1. Execution time of tests and workload.

Workload Single Test (s)

Name Type avg std

getCredentials Serv. Test 8.88 0.60

createFolder Serv. Test 10.71 0.69

addFiles Serv. Test 10.04 2.01

addEventCalendar Serv. Test 11.38 1.87

All Tests Test All 92.98 7.37

All Services Workload 86.04 4.87

Liferay services involved by the workload as injection points. Regarding the probing

system, we observe 55 indicators [6], [22] from three different layers: 23 from the

CentOS operating system, 25 from the middleware (the JVM [24]) and 7 from the

Network. As explained in Section 3.3, we select the 20 most performing anomaly

checkers (and consequently, the most relevant indicators) out of a set of 221 options.

4.3 Discussion of the results

We show the results of the anomaly detection framework. We first comment on the

indicators and the anomaly checkers: in Table 2 and 3 we can observe the most

performing anomaly checkers for each of the two error injections. Intuitively, the

memory error injection can be detected observing indicators related to Cpu and Java

memory; indeed, this can be verified considering the first three checkers selected in

the training phase (Table 2). Similarly, concerning the network error, we expect to

observe anomalies in the network layer (see Tcp_Listen in Table 3) or in the OS

structures that process the incoming data flow (e.g., Buffers in Table 3).

In line iv) of Table 4 we show the results for the anomaly detection module: it

behaves far better than the single anomaly checkers, because it uses a set of them.

Moreover, despite the scores of the checkers are on average better for the experiments

with network error, the detection capabilities of the framework are worse compared to

the experiments with memory consumption injection. It follows that combining

“better” anomaly checkers does not always lead to better scores for our anomaly

detector. This efficiency strongly depends on the synergy between checkers: if a

checker is not able to detect an error while another one is (e.g., they are related to

indicators coming from different areas of the monitored system), this can fix the

missed detection giving the framework the ability to answer correctly. In this study

we considered each checker as a separate detector, and consequently the best checkers

are chosen depending only on their score, without taking care of their characteristics.

A possible improvement could be achieved considering the best n checkers for each

monitored layer: in such a way, we are sure to consider checkers that observe

different parts of the system, raising the likelihood of detecting anomalies.

In the experiments considered as validation set we obtained anomaly alerts in

95.8% of the runs when the memory error is injected: the missed detections are the

remaining 4.2%. Regarding the 40 validation experiments with the network error

Table 2. 10 most performing anomaly checkers for
the experiments with memory error injected

Indicator Data type

(Check)
FScore(2)

Name Layer

SysCpuLoad OS Diff (Hist) 0.37

SysCpuLoad OS Value (Hist) 0.35

ActVirtMPag JVM Value (SPS) 0.33

I/O Wait Proc OS Value (SPS) 0.31

Active Files OS Value (SPS) 0.30

Tcp_Syn NET Value (SPS) 0.28

Tcp_Listen NET Diff (SPS) 0.27

ProcCpuLoad OS Value (Hist) 0.26

ProcCpuLoad OS Diff (Hist) 0.25

Cached Mem JVM Value (SPS) 0.25

Table 3. 10 most performing anomaly checkers for
the experiments with network error injected

Indicator Data type

(Check)
FScore(2)

Name Layer

Buffers OS Value (SPS) 0.45

PageIn OS Value (SPS) 0.42

Tcp_Listen NET Value (SPS) 0.40

PageIn OS Diff (SPS) 0.34

Cached Mem JVM Value (Hist) 0.33

Active Files OS Value (SPS) 0.31

User Procs. OS Value (SPS) 0.30

Tcp_Syn NET Value (Hist) 0.29

ActVirt Pages JVM Diff (Hist) 0.29

PageOut OS Value (SPS) 0.28

injection, instead, we obtained a correct error detection in the 86.7% of the runs.

It should be noted that with this configuration the framework provides an anomaly

evaluation of the observed snapshot in 32.10 ± 5.99 milliseconds. This is the time

needed by our framework to process each snapshot coming from the Target Machine.

Precision and Recall varying modules. We comment on the performances of the

anomaly detector varying the modules and the anomaly checkers. From the top of

Table 4 we summarize precision, recall and F-Scores obtained i) using the framework

in [6], ii) introducing the network layer, iii) including the diff data series in addition to

the default (value) for each indicator and iv) considering services information in

combination with context awareness. Table 4 shows how using context awareness

significantly raises the F-Score. Furthermore, as expected, introducing network

probes significantly improves the F-Score in experiments with network errors.

Other framework configurations can be selected bringing to a higher balance be-

tween precision and recall. For example, considering F-Measure instead of F-

Score(2) as reference metric we obtain a different set of anomaly checkers, ultimately

resulting in precision of 41,0% and 80.2%, with recall of 58,3% and 73,3% respec-

tively for the experiments with memory and network error injection.

5 State of the art and comparison with other solutions

Anomaly detectors have been proposed as error detectors [10] or failure predictors

[2], based on the hypothesis that the activation of a fault (for error detection) or an

error (for failure prediction) manifests as increasingly unstable performance-related

behavior before escalating into a failure. The anomaly detector is in charge to observe

these fluctuations providing a response to the administrator as soon as it can, trigger-

ing proactive recovery or dumping critical data. Reviewing state of the art it is possi-

ble to notice that the most used layers are the network [2], [3] and the operating sys-

tem [6], [11]. This is not surprising since most of the systems include these layers:

building solutions which fetch data from these layers allow building frameworks that

fit in a very wide range of contexts. Regarding context-awareness, as highlighted in

[16], in service-oriented architectures it usually refers to knowledge of the user envi-

ronment to improve the performances of web services. For example, the Akogrimo

project [17] aims at supporting mobile users to access data, knowledge, and computa-

tional services on the Grid focusing on user-context (such as user location and envi-

ronmental information). In our work we refer to a server-side context-awareness,

meaning that we do not require user information taking into account only runtime

information about the services that are running in the SOA.

Table 4. Anomaly detection module performance

Detector Setup Anom.

Checks

Memory Experiment Network Experiment

Layers Data C-Aw Precision Recall FScore(2) Precision Recall FScore(2)

i OS, JVM value NO 48 16.1% 59.5% 37.6% 35.1% 44.3% 42.1%

ii OS, JVM, Net value NO 55 19.1% 65.6% 44.1% 43.8% 55.0% 52.3%

iii OS, JVM, Net value, diff NO 110 22.7% 78.3% 52.5% 29.2% 72.2% 55.7%

iv OS, JVM, Net value, diff YES 221 33.5% 95.8% 69.8% 50.0% 86.7% 75.6%

A detailed overview of anomaly detection frameworks can be found in [1]. Here

we focus on three anomaly detection frameworks [2], [3], [14] addressing error detec-

tion/failure prediction where the authors reported the measurements for detection

accuracy metrics (i.e., precision and recall). They observe indicators from multiple

layers as the framework presented here does. We remark that these studies are exer-

cised on systems with low dynamicity. Tiresias [3] predicts crash failures trough the

observation of network, OS and application metrics by applying an anomaly detection

strategy that is instantiated on each different monitored parameter. In CASPER [2],

instead, the authors use different detection modules based on symptoms aggregated

trough Complex Event Processing techniques based on the non-intrusive observation

of network traffic parameters. Lastly, in [14] the authors aimed to detect anomalies

due to the manifestation of hang, crash and content failure errors in an ATM system

looking at OS indicators, exercising the framework on Windows and Linux kernels.

In Table 5 we reported the anomaly detection performance extracted from the sur-

veyed studies. Detection performances (we show precision, recall and F-Score(2)) are

strongly influenced by the characteristics of the target system: with low dynamicity it

is easier to define a normal behavior, resulting in a significantly lower number of false

detections (see [14], [2] and [3] in Table 5). Finally, looking at the performances of

our framework we achieved a recall index that is competitive considering highly dy-

namic systems. Precision is low, meaning many false positives are generated, but in

our setting we favoured recall since our aim is to minimize missed detections.

6 Conclusions and Future Works

In this paper we presented an anomaly detection framework for dynamic systems and

especially SOAs. Assuming knowledge of the services that are running at time t on

the observed machine gave us the opportunity to consider additional information that

resulted fundamental to improve our anomaly detection capabilities.

As future works a sensitivity analysis directed to find the best alpha setup, a larger

error model comprising Liferay software bugs, and an estimation of detection time

varying number and type of observed layers will be investigated, along with strategies

to reduce false positives. To further explore our context, we will focus on how chang-

es in the user workload – and not in the services – can influence our detection capabil-

ities and which strategies can be applied to maintain our solution working effectively.

The basic failure model we considered for the experiments will be expanded includ-

ing other items, to test the capabilities of the framework in different contexts.

Lastly, analysis aimed to understand the applicability of this solution when multi-

ple SOA services are called simultaneously by different users will be investigated.

Table 5. Comparing performance indexes with similar studies.

System Under Test
Precision Recall FScore(2)

Characteristics Dynamicity Layers

[14] (best UNIX) ATM System Very Low OS 97.0% 100.0% 99.3%

CASPER [2] ATM System Very Low Net 88.5% 76.5% 78.6%

TIRESIAS [3] Emulab Distrib. Env. Low OS, Net 97.5% n.p. n.p.

Our Work - Memory
Secure! SOA High

Net, OS,
JVM

33.5% 95.8% 69.8%

Our Work - Network 50.0% 86.7% 75.6%

Acknowledgements. This work has been partially supported by the Joint Program

Initiative (JPI) Urban Europe via the IRENE project, by the European FP7-ICT-2013-

10-610535 AMADEOS project and by the European FP7-IRSES DEVASSES.

References

[1] Chandola, Varun, Arindam Banerjee, and Vipin Kumar. "Anomaly detection: A survey." ACM
computing surveys (CSUR) 41.3 (2009): 15.

[2] Baldoni, Roberto, Luca Montanari, and Marco Rizzuto. "On-line failure prediction in safety-critical
systems." Future Generation Computer Systems 45 (2015): 123-132.

[3] Williams, Andrew W., Soila M. Pertet, and Priya Narasimhan. "Tiresias: Black-box failure prediction
in distributed systems." Parallel and Distributed Processing Symposium, IEEE 2007. IPDPS 2007.

[4] Tanenbaum, Andrew S., and Maarten Van Steen. Distributed systems. Prentice-Hall, 2007.

[5] Bose, S., S. Bharathimurugan, and A. Kannan. "Multi-layer integrated anomaly intrusion detection
system for mobile adhoc networks." Signal Processing, Communications and Networking, 2007.
ICSCN'07. International Conference on. IEEE, 2007.

[6] Ceccarelli, Andrea, et al. "A Multi-layer Anomaly Detector for Dynamic Service-Based Systems."
Computer Safety, Reliability, and Security. Springer International Publishing, 2015. 166-180.

[7] Jyothsna, V., VV Rama Prasad, and K. Munivara Prasad. "A review of anomaly based intrusion
detection systems." International Journal of Computer Applications 28.7 (2011): 26-35.

[8] Secure! project, http://secure.eng.it/ (last accessed 1st March 2016)

[9] Bondavalli, Andrea, et al. "Resilient estimation of synchronisation uncertainty through software
clocks." International Journal of Critical Computer-Based Systems 4.4 (2013): 301-322.

[10] Modi, Chirag, et al. "A survey of intrusion detection techniques in cloud." Journal of Network and
Computer Applications 36.1 (2013): 42-57.

[11] Shabtai, Asaf, et al. "“Andromaly”: a behavioral malware detection framework for android devices."
Journal of Intelligent Information Systems 38.1 (2012): 161-190.

[12] Sokolova M., Japkowicz, Szpakowicz. "Beyond accuracy, F-score and ROC: a family of discriminant
measures for performance evaluation." AI 2006: Springer Berlin Heidelberg, 2006. 1015-1021.

[13] Liferay, http://www.liferay.com (last accessed 1st March 2016)

[14] Bovenzi, Antonio, et al. "An OS-level Framework for Anomaly Detection in Complex Software
Systems." Dependable and Secure Computing, IEEE Transactions on 12.3 (2015): 366-372.

[15] Erl, Thomas. Soa: principles of service design. Vol. 1. Upper Saddle River: Prentice Hall, 2008.

[16] Truong, Hong-Linh, and Schahram Dustdar. "A survey on context-aware web service systems."
International Journal of Web Information Systems 5.1 (2009): 5-31.

[17] Loos, Christian. "E-health with mobile grids: The Akogrimo heart monitoring and emergency
scenario." Akogrimo White Paper,(Online (2006).

[18] Esper Team and EsperTech Inc. “Esper Reference version 4.9.0”, Technical Report, 2012

[19] Valls, Marisol García, Iago Rodríguez López, and Laura Fernández Villar. "iLAND: an enhanced
middleware for real-time reconfiguration of service oriented distributed real-time systems." Industrial
Informatics, IEEE Transactions on 9.1 (2013): 228-236.

[20] rclserver.dsi.unifi.it/owncloud/public.php?service=files&t=89f4b993136bda20ae9cfb3f32ac62da

[21] Thramboulidis, Kleanthis, Doukas, and Koumoutsos. "A SOA-based embedded systems development
environment for industrial automation." EURASIP Journal on Embedded Systems (2008): 3.

[22] Bondavalli, Andrea, et al. "Differential analysis of Operating System indicators for anomaly detection
in dependable systems: An experimental study."Measurement 80 (2016): 229-240.

[23] Zoppi, Tommaso. "Multi-Layer Anomaly Detection in Complex Dynamic Critical Systems.",
Dependable Systems and Networks – Student Forum Session, DSN 2015.

[24] Cotroneo, Domenico, et al. "Failure classification and analysis of the java virtual machine.", ICDCS
2006. 26th IEEE International Conference on. Distributed Computing Systems IEEE, 2006.

https://rclserver.dsi.unifi.it/owncloud/public.php?service=files&t=89f4b993136bda20ae9cfb3f32ac62da

