Skip to main content

Advancing Dynamic Fault Tree Analysis - Get Succinct State Spaces Fast and Synthesise Failure Rates

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security (SAFECOMP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9922))

Included in the following conference series:

Abstract

This paper presents a new state space generation approach for dynamic fault trees (DFTs) together with a technique to synthesise allowed failures rates in DFTs. Our state space generation technique aggressively exploits the DFT structure — detecting symmetries, spurious non-determinism, and don’t cares. Benchmarks show a gain of more than two orders of magnitude in terms of state space generation and analysis time. Our approach supports DFTs with symbolic failure rates and is complemented by parameter synthesis. This enables determining the maximal tolerable failure rate of a system component while ensuring that the mean time of failure stays below a threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dugan, J.B., Bavuso, S.J., Boyd, M.: Fault trees and sequence dependencies. In: Proceedings of RAMS, pp. 286–293 (1990)

    Google Scholar 

  2. Stamatelatos, M., Vesely, W., Dugan, J.B., Fragola, J., Minarick, J., Railsback, J.: Fault Tree Handbook with Aerospace Applications. NASA Headquarters, Washington, D.C. (2002)

    Google Scholar 

  3. Coppit, D., Sullivan, K.J., Dugan, J.B.: Formal semantics of models for computational engineering: a case study on dynamic fault trees. In: Proceedings of ISSRE, pp. 270–282 (2000)

    Google Scholar 

  4. Sullivan, K., Dugan, J.B., Coppit, D.: The Galileo fault tree analysis tool. In: Proceedings of FTCS, pp. 232–235 (1999)

    Google Scholar 

  5. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE Trans. Dependable Secure Comput. 7(2), 128–143 (2010)

    Article  Google Scholar 

  6. Junges, S., Guck, D., Katoen, J.P., Stoelinga, M.: Uncovering dynamic fault trees. In: Proceedings of DSN (2016, to appear)

    Google Scholar 

  7. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 147–158. Springer, Heidelberg (1998)

    Google Scholar 

  8. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  9. Ou, Y., Dugan, J.B.: Sensitivity analysis of modular dynamic fault trees. In: Proceedings of IPDS, pp. 35–43 (2000)

    Google Scholar 

  10. Montani, S., Portinale, L., Bobbio, A., Codetta-Raiteri, D.: Automatically translating dynamic fault trees into dynamic Bayesian networks by means of a software tool. In: Proceedings of ARES, pp. 804–809 (2006)

    Google Scholar 

  11. Walker, M., Papadopoulos, Y.: Qualitative temporal analysis: towards a full implementation of the Fault Tree Handbook. Control Eng. Pract. 17(10), 1115–1125 (2009)

    Article  Google Scholar 

  12. Junges, S., Guck, D., Katoen, J.P., Rensink, A., Stoelinga, M.: Fault trees on a diet - automated reduction by graph rewriting. In: Li, X., Liu, Z., Yi, W. (eds.) SETTA 2015. LNCS, vol. 9409, pp. 3–18. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  13. Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc: a tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFECOMP. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: Proc. of LICS, pp. 342–351. IEEE Computer Society (2010)

    Google Scholar 

  15. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Gulati, R., Dugan, J.B.: A modular approach for analyzing static and dynamic fault trees. In: Proceedings of RAMS, pp. 57–63 (1997)

    Google Scholar 

  17. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

    Article  MATH  Google Scholar 

  19. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.P., Timmer, M.: Analysis of timed and long-run objectives for Markov automata. LMCS 10(3), 17 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen, J.-P., Ábrahám, E.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  21. Guck, D., Katoen, J.P., Stoelinga, M., Luiten, T., Romijn, J.: Smart railroad maintenance engineering with stochastic model checking. In: Proceedings of RAILWAYS, Civil-Comp Proceedings, Civil-Comp Press, vol. 104, pp. 299–314 (2014)

    Google Scholar 

  22. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety, dependability and performance analysis of extended AADL models. Comput. J. 54, 754–775 (2011)

    Article  Google Scholar 

  23. Češka, M., Dannenberg, F., Kwiatkowska, M., Paoletti, N.: Precise parameter synthesis for stochastic biochemical systems. In: Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 86–98. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Acknowledgement

We thank Christian Dehnert for fruitful discussions. This work was supported by the Excellence Initiative of the German federal and state government, the CDZ project CAP (GZ 1023), and the BMBF project HODRIAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Volk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Volk, M., Junges, S., Katoen, JP. (2016). Advancing Dynamic Fault Tree Analysis - Get Succinct State Spaces Fast and Synthesise Failure Rates. In: Skavhaug, A., Guiochet, J., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2016. Lecture Notes in Computer Science(), vol 9922. Springer, Cham. https://doi.org/10.1007/978-3-319-45477-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45477-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45476-4

  • Online ISBN: 978-3-319-45477-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics