
HAL Id: hal-01485025
https://hal.science/hal-01485025

Submitted on 8 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Based Real-Time Evaluation of Security
Patterns: A SCADA System Case Study

Anas Motii, Agnes Lanusse, Brahim Hamid, Jean-Michel Bruel

To cite this version:
Anas Motii, Agnes Lanusse, Brahim Hamid, Jean-Michel Bruel. Model-Based Real-Time Evaluation
of Security Patterns: A SCADA System Case Study. TIPS Workshop in 35th International Conference
on Computer Safety, Reliability and Security (Safecomp 2016), Sep 2016, Trondheim, Norway. pp.
375-389. �hal-01485025�

https://hal.science/hal-01485025
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 17147

The contribution was presented at Safecomp 2016 :
http://www.ntnu.edu/safecomp2016

To cite this version : Motii, Anas and Lanusse, Agnes and Hamid, Brahim and
Bruel, Jean-Michel Model-Based Real-Time Evaluation of Security Patterns: A
SCADA System Case Study. (2016) In: TIPS Workshop in 35th International
Conference on Computer Safety, Reliability and Security (Safecomp 2016), 20
September 2016 - 23 September 2016 (Trondheim, Norway).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Model-Based real-time evaluation of security patterns: A

SCADA system case study

Anas Motii1, Agnès Lanusse1, Brahim Hamid2, Jean-Michel Bruel2

1 CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems,

P.C. 174, Gif-sur-Yvette, 91191, France

{anas.motii,agnes.lanusse}@cea.fr
2 IRIT, University of Toulouse

118 Route de Narbonne, 31062 Toulouse Cedex 9, France

{brahim.hamid,bruel}@irit.fr

Abstract. Securing critical systems such as cyber physical systems (CPS) is an

important feature especially when it comes to critical transmitted data. At the

same time, the implementation of security counter-measures in such systems may

impact other functional or non-functional concerns. In this context, we propose a

model-based approach for securing critical systems at early design stage. This

approach combines security analysis and mitigation solution proposals with

multi-concern architectural evaluation. It exploits two views of security counter-

measures patterns: abstract and concrete. The abstract view is used to select rel-

evant solutions to security requirements on a logical point of view. Then, the

concrete view helps the architect evaluating different possible implementation

alternatives against other design constraints. The modeling is based on accepted

OMG standards such as UML and MARTE. In this paper, the approach is illus-

trated on a SCADA (Supervisory Control and Data Acquisition) system case

study and a tool chain based on Papyrus UML supports the approach.

Keywords: Architecture evaluation, MBE for Cyber-Physical Systems, Model-

Based System Analysis, Security Patterns, Model-Based Security Analysis

1 Introduction

Cyber-physical systems (CPS) consist of computational units controlling physical en-

tities. The complexity of such systems during their design comes from the involvement

of transdisciplinary concerns. Indeed, such systems must satisfy a number of require-

ments (real-time, physical, energy efficiency and others). In addition, critical cyber-

physical systems have to satisfy assurance requirements (IEC 61508 and ISO 27005

[1], for dependability and security concerns). This brings the complexity of such sys-

tems to a higher level. In particular, security concerns have an impact on other concerns

such as real-time performance. For example, encryption adds a delay to the transmis-

sion time of data from one point to the other and affects real-time constraints. Therefore,

architects must apply trade-offs to satisfy functional requirements (real-time), and se-

curity requirements as two categories of constraints.

Model-Based System Engineering (MBSE) provides a useful contribution for the

design and evaluation of secure systems. It makes easier the enactment of the separation

of concern paradigm (security, real-time, performance, etc.). It helps the architect spec-

ify in a separate view non-functional requirements such as security at a high level of

abstraction. Moreover, expertise and knowledge in system architecture and security can

be captured within patterns that provide generic solutions for recurring problems. In

particular for security, where protecting data and services is an important issue, security

pattern catalogues [2] provide guidelines to build secure architectures.

Previous work have focused on security and real-time requirements separately: de-

pendability and security modeling and analysis [3][4]; and real time requirements [5].

A survey of dependability modeling and analysis frameworks with UML can be found

in [3]. It focuses on software systems Reliability, Availability, Maintenance and Safety

(RAMS). In [4], the authors have extended MARTE with a Dependability Analysis and

Modeling (DAM) UML profile and applied it to an intrusion-tolerant message service

case study. In [5], the authors presented a staged approach to optimize the deployment

in the context of real-time distributed systems.

Other works focused on large scale architecture optimization, decision and trade-off

analysis [6][7]. In the automotive domain, a multi-objective automatic optimization

approach based on EAST-ADL modeling is proposed [6]. It supports the evaluation of

alternative architectures according to dependability, timing performance, cost etc. More

specifically in security and performance interplay, the study in [7] focused on the anal-

ysis of the performance effects of security solutions modeled as UML non-functional

aspects. It used SPT UML profile for annotating a UML design with schedulability,

time and performance data. The resulting model and the security aspects were trans-

formed separately and composed into one model which was then analyzed.

In this paper we present an approach to select and evaluate possible candidate im-

provements in order to find the best set of security patterns respecting timing con-

straints. To this end, we propose a model-based approach for the development of secure

critical systems based on architectural evaluation driven by security concerns. This

work is part of a more general process devoted to incremental pattern-based modeling

and safety and security analysis for correct by construction systems design. In previous

works, we have proposed a model-based approach for guiding the selection of security

patterns based on risk analysis and pattern classification [8]. In a recent paper in [9],

we proposed an approach to support Security, Dependability and Resource Tradeoffs

using Pattern-based Development and Model-driven Engineering. In this paper, we go

one step further, we study the impact of implementation alternatives of these security

solutions onto the system architecture. A special emphasis is paid to timing perfor-

mance concerns using model-based real-time evaluations. In this context, the system

architect starts from a functional architecture and an abstract platform. The artifacts are

abstract at this stage of development but contain temporal information (e.g., computa-

tion cost, deadlines and period of event for each function). Once security requirements

are specified (resulting from a security risk analysis), several security pattern solutions

are proposed from a repository of patterns. The real-time evaluation helps the architect

to select the best candidates that respect timing concerns (e.g., maximum utilization

capacity in the platform).

The remaining sections are organized as follows: Section 2 describes the SCADA

system case study and its security issues. Section 3 illustrates the real-time evaluation

approach of security solutions on the case study and gives its steps and modeling prin-

ciples. Section 4 discusses the obtained experimental results. Section 5 concludes the

paper and discusses future work.

2 Case study: SCADA system

2.1 Description

SCADA systems are meant to control processes through local controllers, acquiring

field data and returning it to a SCADA master computer system. Fig. 1 shows a typical

SCADA system architecture. It consists of a SCADA master, an operator workstation

and a number of field devices connected by a communication infrastructure. Field de-

vices can be Programmable Logic Controllers (PLC), Remote Terminal units (RTU),

sensors and actuators.

Fig. 1. A typical SCADA system architecture [10]

The SCADA master provides the operator with a Human-Machine Interface (HMI)

through a work station to issue commands to PLCs and gather field data from them.

PLCs are digital computers programmed to continuously monitor sensors and control

actuators (e.g., valves, pumps, etc.). RTUs are used for converting sensor data into dig-

ital data. As SCADA systems cover large areas, they use Wide Area Networks (WAN).

SCADA systems provide the following functionalities: data acquisition and handling

(e.g., polling data from controllers, alarm handling, calculations, logging and archiving)

on a set of parameters, typically those they are connected to.

2.2 SCADA security

It is very important for SCADA systems to be safe and reliable. They have a good

reputation in this field. However, the key issue nowadays is SCADA security. Govern-

ments all over the world are worried about the security of SCADA systems that run

over critical infrastructures. First generation of SCADA systems were introduced in the

1970’s and second generation in 1980’s. Many of these are still in operation especially

second generations. They relied on two approaches for security: (1) Security by isola-

tion: based on the principle that if the system is not connected to the Ethernet then it

cannot be attacked by external attackers. However it is still vulnerable to insider attacks.

(2) Security through obscurity: based on the fact that SCADA systems used unusual

programming languages and communication protocols. However this is also vulnerable

to insider attackers who know about these technologies. In addition the documentation

can be found on internet or can be stolen.

Third generation SCADA systems use standard IT technologies and protocols (e.g.,

organizational wireless networking, Microsoft windows, TCP/IP and web browsers as

interfaces). The third generation systems which are web connected are integrated with

an interface to second generation systems. Opening SCADA systems rises a major issue

for guarantying security since the “security by isolation” principle is violated.

Proposing security solutions for critical systems, and in particular SCADA systems,

requires an early architecture evaluation analyzing the impact of these solutions on

quality attributes. In this paper, we treat one quality attribute which is real-time perfor-

mance. The aim is to help the architect, at a high level design, selecting the best set of

security solution implementations that respect timing requirements (if any). As men-

tioned earlier, the selection of security patterns is driven by a risk analysis performed

in previous steps of the methodology [8]. This risk analysis follows a model-based im-

plementation of EBIOS1 methodology described in [11]. However this step is not de-

scribed in this paper. The foundations of the approach are described in the next section.

3 Model-based Real-time evaluation of security pattern

configurations

In this section we present the foundations of a model-based seamless approach for an

incremental architecture securing process involving both: solutions identification, inte-

gration, evaluation and comparison. We present here the corresponding workflow, and

illustrate each step of this process over the SCADA system case study.

3.1 Approach workflow overview

The process workflow proposed for architectural solutions evaluation follows 3 main

steps (1 to 3) as illustrated in Fig. 2. Actually, the workflow itself is part of a more

global process not described here that encompasses security analysis of design archi-

tecture proposal, and issues security requirements. Step0 here refers to a preliminary

stage aimed at selecting appropriate pattern solutions satisfying these requirements. The

main objective of the workflow presented below is to support the real-time evaluation

1 EBIOS: Expression of Needs and Identification of Security Objectives from ANSSI, the

french agency for security of information systems (Agence nationale de la sécurité des sys-

tèmes d'information).

of various possible security pattern configurations to assess their soundness regarding

temporal (and possibly resource) constraints.

Fig. 2. Process of real-time evaluation of security pattern configurations

This seamless process relies on three main kinds of artifacts: (1) functional architec-

tures to describe system and software functions, (2) security patterns to describe system

security solutions and (3) platform models to describe hardware resources. The ap-

proach is centered on the concepts of security patterns. In this context, we consider the

following definitions.

3.2 Definitions

Definition 1 (Security Pattern): a security pattern provides a generic solution of recur-

ring security problem. Security patterns follow templates such as the ones proposed by

GoF [12] and include several attributes e.g., “Name”, “Context”, “Problem”, “Solu-

tion”, “Consequences” and “See Also”. “Structure” contains information about the

functional structure of the pattern and uses generally semi-formal languages e.g.,

UML.to describe it. “Consequence” contains information about the impact of using this

pattern on the target architecture quality attributes e.g., availability and performance.

The level of abstraction of the pattern depends on the detail of its solution. We distin-

guish: (1) abstract pattern providing an abstract solution without clear details of the

used techniques (2) concrete pattern refining the solution provided by an abstract pat-

tern possibly using other patterns. There are thus two types of relationships: refinement

and usage relationships.

Definition 2 (System of security patterns): a System of security patterns is a collection

of security patterns with their relationships. In our context, patterns have different re-

finement alternatives.

Definition 3 (System of security patterns configuration): A configuration is a subset of

a System of security patterns. It will be used to specify the possible refinement alterna-

tives (concrete patterns). It will be also referred to as “security solution alternative”.

Definition 4 (Pattern integration): pattern integration means refining the functional ar-

chitecture by adding security pattern functions. Each security solution alternative is in-

tegrated producing secured architecture alternatives. In the context of MDE, pattern

integration is a “model refinement”.

3.3 Process description

As stated earlier, the evaluation process is composed of three main steps (see Fig.2),

and a preliminary one for patterns selection. This process considers as inputs security

requirements resulting from prior risk analysis and the design model.

In the case of SCADA systems, such security requirements can be: (1) There should be

a mechanism for secure communication that guarantees data integrity, confidentiality

and authenticity, (2) There should be a mechanism that protects against denial of service

attacks at the level of the SCADA master.

Step 0 (Pattern selection).
Selecting appropriate security solutions, here presented as security patterns, from secu-

rity requirements is an important step during the development of secure software and

systems. In this context, we use the selection method described in [8] which is based

on the use of risk analysis to derive security properties and constraints; along with pat-

tern selection principles using pattern classifications [13][14] to select concrete security

patterns. The method is based on a library of patterns stored in the SEMCO reposi-

tory [15]. The System and software Engineering Pattern Metamodel (SEPM) [15] is

used to model Security and Dependability (S&D) patterns which are then stored in a

repository. Patterns provide their functionalities through interfaces. Their

characteristics are described by properties.

After analyzing security requirements, the architect identifies a set of security patterns

along with their refinement alternatives, i.e. concrete patterns. It is important to note

that the selection of security patterns takes into account conflicts due to inconsistencies

between patterns. For example, Limited view and Full view pattern are conflictual by

nature so that implementing both of them in a system will surely bring inconsistencies.

The search in the repository leads to the identification of two abstract patterns:

· SecureComm pattern [2]: ensures that data passing across a secure network is secure.

It can be refined by two patterns: SecureCommSSL (P1) and SecureCommIPsec (P2).

SecureCommSSL uses X.509 certificates for authentication and secure channel for

creating a cryptographic tunnel.

· Firewall pattern [2]: restricts access to internal networks which can be refined by

PacketFilter (P3) and StatefulFiltering (P4).

The result of this step is the System of security patterns represented in Fig. 3.

Fig. 3. System of security patterns

Step 1 (System of patterns configuration generation).

The goal of this step is to create the possible security solution alternatives from a system

of patterns using system of patterns configuration management based on variability

models.

Fig. 4. Security solution alternatives generated from the pattern system

Security variability consists of documenting all alternative security solutions for a given

problem. Security variability is important in the context of architecture design because

it helps the architect understanding (1) which security solution varies and how it varies,

(2) if there are security solutions satisfying several security objectives, (3) possible con-

flicts between security solutions, (4) security solutions that supports others.

Several works have treated this concern [16] [9]. In [16], the authors present a modeling

approach based on aspect engineering. In [9], the author have presented an algorithm

for pattern system configuration management. It takes as input a pattern system with its

relationships, a base configuration and a reference kind (i.e. relationship type); and out-

puts a security solution alternative.

 In the context of the paper [9] is used. For the case study, Fig. 3 can be considered as

a possible security variability model. Then, Fig. 4 shows the corresponding possible

security solution alternatives. Each system of security solution alternative consists of a

set of concrete patterns in dark grey.

Step 2 (Pattern configuration integration).

The goal of this step is to integrate each security solution alternative into the functional

architecture thus obtaining refined design architecture candidates.

The difficulty of this step is not only the verification of the correct integration of the

pattern but also the management of possible conflicts between the functional architec-

ture and a security pattern or between security patterns themselves.

Fig. 5. SCADA functional architecture before (a) and after the integration of Alternative 4 (b)

The integration of concerns; and security in particular has been treated in [17][18][19].

Pattern integration consists of composing security patterns with a functional architec-

ture. It requires techniques such as: role bindings merge techniques, checking tech-

niques prior and after the integration to detect possible conflicts.

In the context of this work, [19] is used. Each security solution alternative is applied

into the SCADA system functional architecture. Fig. 5 depicts the initial SCADA func-

tional architecture (a) and the result of the integration (b) of security solution alterna-

tive 4.

Step 3 (Real-time evaluation).

Real-time evaluation principles are based on works by [20] with the Optimum method-

ology2. This methodology was previously applied in other modeling contexts such as

EAST-ADL in the MAENAD project. In this approach design models are evaluated at

early stages to help make architectural decisions. Here we use it on UML design models

and patterns stored in SEMCO Library.

Modeling principles.

The Optimum methodology is used to build a task model from the design in order to

evaluate, compare architectural solutions and/or optimize deployment. We describe

here the modeling principles and main steps of the methodology. Note that in our con-

text, it is applied to high level functional design to get preliminary decisions on the

overall architecture security improvement solutions. The input is thus a functional view

of the application and patterns annotated using MARTE profile3.

A task model is obtained following four steps: (1) identification of event-chains in the

functional model, (2) specification of timing constraints (on event-chains and on be-

haviors corresponding to functions), (3) computation of a MARTE task model (end-to-

end flows), and (4) tasks Allocation Specification (tasks on nodes).

To support the approach several diagrams are used: composite diagrams for 1) and 2);

activity diagrams for 3); and composite diagrams showing task model and platform

model together with allocation links for 4). This Optimum workflow and MARTE no-

tations used are summarized in Fig. 6.

Event chains identification. The functional organization of the application is described

in a Composite diagram showing functions and their connections. From this global view

several timing views corresponding to end-to-end flows are selected.

Timing constraints setup. Selected event chains are then tagged to setup timing con-

straints. MARTE annotations are added to these diagrams to set: (1) event chains timing

constraints (between 2 ports), (2) execution time constraints on functions (actually ex-

pected for the behavior implementing the function).

Task model setup. The task model structure is described using activity diagrams and

can be directly obtained from the event chains specifications above. Each of them is

translated into a MARTE end-to-end event flow. Each flow is activated by the reception

of an event and described by the consequent behaviors implementing the various func-

tions traversal connected through connectors.

MARTE annotations are used to: (1) characterize a timing configuration, (2) specify a

data arrival pattern for the activating event (workflowEvent) and (3) specify constraints

on the different steps (behaviors involved in the event flow).

2 Optimum methodology is developed at LIST CEATech and is integrated within Papyrus open-

source modeling tool.
3 MARTE profile is a standard from the OMG (UML Profile for MARTE™: Modeling and

Analysis of Real-time Embedded Systems™). http://www.omgmarte.org/

Fig. 6. Using MARTE to set timing constraints

Allocation model setup. Finally an allocation model is described in a composite dia-

gram that shows the allocation between functions (actually the tasks corresponding to

their behaviors) onto a platform model.

MARTE annotations are used to: (1) set allocation relations and (2) set hardware archi-

tecture characteristics on execution hosts and communication channels.

Real-time evaluation steps.

The modeling principles described earlier allow the specification of task and allocation

models exploitable by scheduling algorithms such as Rate Monotonic scheduling

(RMS) and offset-based scheduling [21][22]. Let P be a platform consisting of con-

nected nodes and F be a set of functions . Each function

has a computation cost . The execution nodes are connected through buses. Both

nodes and buses have a maximal capacity that must not be exceeded. In the context of

multiple processors, each node runs an independent real-time operating system. Each

platform node executes a set of tasks . Each task consists of

a subset of functions from F. Each task has an activation period , an execution

time (computed as the sum of computation costs of all allocated function) and a

deadline . Real-time evaluation consists of two steps:

1. Preliminary evaluation. A preliminary real-time evaluation is used to compute

nodes utilizations. If one of the refined architectures exceeds the node maximum ca-

pacity, it is rejected. The node utilization is computed as:

In case of RMS, the utilization for each node must at least be:

with n being the number of tasks assigned to Ni. If not, the node is overloaded and

response time analysis is not performed.

2. Response time analysis. The response time analysis is performed for architectures

succeeding the preliminary evaluation. At this step, response time analysis is performed

following the principles proposed in [22] for distributed systems. It concerns the com-

putation of the worst case response time of every task. All response times must

verify: . If not, the tasks are not schedulable and the corresponding archi-

tecture is rejected.

In the context of this work, we use RMS for preliminary evaluation and offset-based

scheduling for response time analysis using QOMPASS tool that supports Optimum

methodology.

4 Preliminary experimental results

As a preliminary experiment, we apply the approach to a SCADA system case study.

Fig. 7 shows the input functional architecture together with hardware platform. The

functional model contains ten functions in three transactions with their deadlines and

trigger periods. The hardware topology in the platform contains a SCADA master and

a PLC connected with Modbus. The partitioning of functions into tasks and assignment

of tasks onto hosts is also shown. In addition, the signal between “Set point processing”

and “Command computation” is mapped onto a message. The execution budgets of the

functions, the assigned tasks and hosts are showed in Table 1. The values of the

SCADA function timing parameters are based on IEEE 1646 standard [23] specifying

communication deadlines and IEC 61850 [24] specifying communication network de-

lays in different information categories.

Fig. 7. Input functional architecture, hardware platform and deployment

Similarly, the timing and placement parameters of the used security patterns are showed

in Table 2. The concrete patterns have the same functions but have different execution

times (two execution time columns). The timing parameters are based on a review of

technical reports of SSL/IPsec [25], and stateful/packet firewall [26].

One important point is that the experiment has required some effort in quantifying real-

time parameters of security pattern functions. Some functions execution times were

estimations and averages. For example, in SecureComm pattern function “HMAC” does

not have the same execution time as it depends on the used algorithm (e.g., HMAC-

SHA-1-96, HMAC-MD5). However, we believe that estimations and averaging is

enough as the approach is meant for high level evaluation and architecture decision

making. For example, if none of the security solution alternatives respected the timing

requirements because of overload; the architecture of SCADA can be rethought leading

to adding an execution node.
Table 1. Timing parameters and deployment of SCADA functions

Functions Execution time Task Host

Setpoint Processing 8.7 SCADA master

Poll Data 9.6 SCADA master

Log Data 8.5 SCADA master

Check Status 9.6 SCADA master

Visualize Data 10.5 SCADA master

Alarm Handler 10.3 SCADA master

Archive Data 9.5 SCADA master

Command Computation 10 PLC

Data Preprocessing 9.5 PLC

Diagnosis 8.9 PLC

Table 2. Timing parameters and deployment of security pattern functions

Patterns Functions Execution times Task

(1) (2)

SecureCommSSL (1)

SecureCommIPsec (2)

Authentication 9.7 38.7

Key exchange 10.1 39.6

Encryption 9.9 9.9

HMAC 9.2 9.2

Decryption 10.3 10.3

Integrity checking 10.2 10.2

PacketFiltering (1)

StatefulFiltering (2)

Filtering 10 40

4.1 Results

The preliminary analysis consists in evaluating the placement of SCADA and pattern

functions on hosts described in Table 1 for each security solution alternative (1, 2, 3

and 4) in Fig. 4. The left side of Fig. 8 shows the node utilization results of each alter-

native. The utilization bound of the SCADA master and PLC are up to 75.68% (four

tasks) and 77.97% (three tasks) respectively. Security solution alternatives 2 and 4 are

rejected because the SCADA master utilization in the two cases (83.33% and 103.33%)

exceeds the threshold. Response time analysis given in [22] is performed for security

solution alternatives 1 and 3 since they pass the preliminary evaluation. Task re-

sponse time is up to 280ms in alternative 3 and violates its deadline of 248ms. This is

due to the offset added by task and the message transmission time. All tasks of con-

figuration 1 respect their deadline: (150ms), (240ms), (60ms), (120ms),

 (70ms), (100ms) and (30ms). From the evaluations, alternative 1 is the best

security solution alternative that fulfils security requirements and respects real-time

constraints.

Fig. 8. Node utilization for security solution alternatives 1, 2, 3 and 4, and tasks response times

for alternatives 1 and 3

4.2 Discussion

From this first experimentation, we conclude that the approach fulfils the objective of

finding the best set of security patterns respecting timing constraints.

The work has two main contributions: (1) the proposal of abstract security pattern so-

lutions fulfilling security requirements and (2) the evaluation of the possible implemen-

tations fulfilling real-time requirements by the integration of possible security solution

alternatives. In this context, this work can be beneficial to resource constrained embed-

ded systems e.g., automotive, avionics. For instance in EAST-ADL, trade-off analysis

is performed for one design model with different parameters whose values determine

whether the design satisfies the model or not. Our work adds a step forward which is

the evaluation of different design alternative models against non-functional concerns

(security in this paper). This work can benefit from EAST-ADL concepts for configu-

rations management using features diagrams.

Acknowledgements. This work is conducted in the context of a Ph.D. thesis funded by

CEA LIST and co-leaded by CEA (LISE) and IRIT (MACAO).

5 Conclusion and future work

The paper presents a model-based approach for evaluating security solutions based on

patterns applied to a SCADA system case study. It shows the applicability of the ap-

proach. The main benefits are to provide a tooling support for early evaluation of dif-

ferent implementation of security measures using: pattern composition and integration,

automatic configuration generation and evaluation. The evaluation focuses on temporal

performance concerns. This work is part of a process devoted to incremental pattern-

based modeling and safety and security analysis for correct by construction systems

design. The results obtained help the designer select appropriate design solution to re-

inforce security. The methodology relies on UML/MARTE for modeling and makes

extensive use of MARTE to perform architectural evaluation for timing concerns. This

work will be extended to address other concerns (e.g., cost, reliability, memory con-

sumption, power supply).

References

1. ISO/IEC 27005: Information technology — Security techniques — Information se-

curity risk management. (2011).

2. Fernandez, E.B.: Security Patterns in Practice: Designing Secure Architectures Us-

ing Software Patterns. Wiley Publishing (2013).

3. Bernardi, S., Merseguer, J., Petriu, D.C.: Dependability modeling and analysis of

software systems specified with UML. ACM Comput Surv. 45, 2 (2012).

4. Bernardi, S., Merseguer, J., Petriu, D.C.: A dependability profile within MARTE.

Softw. Syst. Model. 10, 313–336 (2011).

5. Mehiaoui, A., Wozniak, E., Piergiovanni, S.T., Mraidha, C., Natale, M.D., Zeng,

H., Babau, J.-P., Lemarchand, L., Gérard, S.: A two-step optimization technique for

functions placement, partitioning, and priority assignment in distributed systems.

In: SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Em-

bedded Systems 2013, LCTES ’13, Seattle, WA, USA, June 20-21, 2013. pp. 121–

132 (2013).

6. Walker, M., Reiser, M.-O., Tucci-Piergiovanni, S., Papadopoulos, Y., Lönn, H.,

Mraidha, C., Parker, D., Chen, D., Servat, D.: Automatic optimisation of system

architectures using EAST-ADL. J. Syst. Softw. 86, 2467–2487 (2013).

7. Petriu, D.C., Woodside, C.M., Petriu, D.B., Xu, J., Israr, T., Georg, G., France, R.,

Bieman, J.M., Houmb, S.H., Jürjens, J.: Performance analysis of security aspects in

UML models. Proc. 6th Int. Workshop Softw. Perform. 91–102 (2007).

8. Motii, A., Hamid, B., Lanusse, A., Bruel, J.-M.: Guiding the Selection of Security

Patterns Based on Security Requirements and Pattern Classification. In: Proceedings

of the 20th European Conference on Pattern Languages of Programs. p. 10:1–10:17.

ACM, New York, NY, USA (2015).

9. Hamid, B.: Interplay of Security&Dependability and Resource Using Model-Driven

and Pattern-Based Development. In: 2015 IEEE Trustcom/BigDataSE/ISPA. pp.

254–262 (2015).

10. Technical Information Bulletin 04-1: Supervisory Control and Data Acquisition

(SCADA) System, (2004).

11. Abdallah, R., Motii, A., Yakymets, N., Lanusse, A.: Using Model Driven Engineer-

ing to Support Multi-paradigms Security Analysis. In: Desfray, P., Filipe, J., Ham-

moudi, S., and Pires, L.F. (eds.) Model-Driven Engineering and Software Develop-

ment. pp. 278–292. Springer International Publishing (2015).

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Re-

usable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA (1995).

13. Fernandez, E.B.: Using security patterns to develop secure systems. In: Software

engineering for secure systems. Industrial and research perspectives. pp. 16–31

(2011).

14. Bunke, M., Koschke, R., Sohr, K.: Organizing security patterns related to security

and pattern recognition requirements. Int. J. Adv. Secur. 5, (2012).

15. Hamid, B., Percebois, C.: A Modeling and Formal Approach for the Precise Speci-

fication of Security Patterns. In: Jürjens, J., Piessens, F., and Bielova, N. (eds.) En-

gineering Secure Software and Systems. pp. 95–112. Springer International Pub-

lishing (2014).

16. Dai, L.: Security Variability Design and Analysis in an Aspect Oriented Software

Architecture. In: Third IEEE International Conference on Secure Software Integra-

tion and Reliability Improvement, 2009. SSIRI 2009. pp. 275–280 (2009).

17. Alam, O., Kienzle, J., Mussbacher, G.: Concern-Oriented Software Design. In:

Moreira, A., Schätz, B., Gray, J., Vallecillo, A., and Clarke, P. (eds.) Model-Driven

Engineering Languages and Systems. pp. 604–621. Springer Berlin Heidelberg

(2013).

18. Nguyen, P.H., Yskout, K., Heyman, T., Klein, J., Scandariato, R., Le Traon, Y.:

Model-Driven Security based on A Unified System of Security Design Patterns.

(2015).

19. Hamid, B., Percebois, C., Gouteux, D.: A Methodology for Integration of Patterns

with Validation Purpose. In: Proceedings of the 17th European Conference on Pat-

tern Languages of Programs. p. 8:1–8:14. ACM, New York, NY, USA (2012).

20. Mraidha, C., Tucci-Piergiovanni, S., Gerard, S.: Optimum: A MARTE-based Meth-

odology for Schedulability Analysis at Early Design Stages. SIGSOFT Softw Eng

Notes. 36, 1–8 (2011).

21. Harbour, M.G., Gutiérrez, J.J., Drake, J.M., Martínez, P.L., Palencia, J.C.: Modeling

distributed real-time systems with MAST 2. J. Syst. Archit. 59, 331–340 (2013).

22. Tindell, K., Clark, J.: Holistic Schedulability Analysis for Distributed Hard Real-

time Systems. Microprocess Microprogram. 40, 117–134 (1994).

23. IEEE Standard Communication Delivery Time Performance Requirements for Elec-

tric Power Substation Automation. IEEE Std 1646-2004. 0_1-24 (2005).

24. CODE, P.: Communication networks and systems in substations–Part 5: Communi-

cation requirements for functions and device models. (2003).

25. Alshamsi, A., Saito, T.: A technical comparison of IPSec and SSL. In: 19th Interna-

tional Conference on Advanced Information Networking and Applications

(AINA’05) Volume 1 (AINA papers). pp. 395–398 vol.2 (2005).

26. Design and Performance of the OpenBSD Stateful Packet Filter (pf),

http://www.benzedrine.ch/pf-paper.html.

