Abstract
A profile describes a set of properties, e.g. a set of skills a person may have or a set of skills required for a particular job. Profile matching aims to determine how well a given profile fits to a requested profile. Profiles can be defined by filters in a lattice of concepts derived from a knowledge base that is grounded in description logic, and matching can be realised by assigning values in [0,1] to pairs of such filters: the higher the matching value the better is the fit. In this paper the problem is investigated, whether given a set of filters together with matching values determined by some human expert a matching measure can be determined such that the computed matching values preserve the rankings given by the expert. In the paper plausibility constraints for the values given by an expert are formulated. If these plausibility constraints are satisfied, the problem of determining a ranking-preserving matching measure can be solved.
The research reported in this paper was supported by the Austrian Forschungsförderungsgesellschaft (FFG) for the Bridge project “Accurate and Efficient Profile Matching in Knowledge Bases” (ACEPROM) under contract [FFG: 841284]. The research reported in this paper has further been supported by the Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry of Science, Research and Economy, and the Province of Upper Austria in the frame of the COMET center SCCH [FFG: 844597].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baader, F., et al. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, New York (2003)
European distionary of skills and competences. http://www.disco-tools.eu
Falk, T., et al.: Semantic-web-technologien in der Arbeitsplatzvermittlung. Informatik Spektrum 29(3), 201–209 (2006)
Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations. Springer, Heidelberg (1999)
Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.: OWL 2: the next step for OWL. J. Web Semant. 6(4), 309–322 (2008)
International Standard Classification of Education. http://www.uis.unesco.org/Education/Pages/international-standard-classification-of-education.aspx
International Standard Classification of Occupations (2008). http://www.ilo.org/public/english/bureau/stat/isco/isco08/
Levandowsky, M., Winter, D.: Distance between sets. Nature 234(5), 34–35 (1971)
Looser, D., Ma, H., Schewe, K.-D.: Using formal concept analysis for ontology maintenance in human resource recruitment. In: Ferrarotti, F., Grossmann, G. (eds.) Ninth Asia-Pacific Conference on Conceptual Modelling (APCCM 2013), vol. 143. CRPIT, pp. 61–68. Australian Computer Society (2013)
Mochol, M., Wache, H., Nixon, L.J.B.: Improving the accuracy of job search with semantic techniques. In: Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 301–313. Springer, Heidelberg (2007)
Paoletti, A.L., Martinez-Gil, J., Schewe, K.-D.: Extending knowledge-based profile matching in the human resources domain. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 21–35. Springer, Heidelberg (2015)
Paoletti, A.L., Martinez-Gil, J., Schewe, K.-D.: Top-k matching queries for filter-based profile matching in knowledge bases. In: Ma, H., Hartmann, S. (eds.) Database and Expert Systems Applications (DEXA 2016), LNCS. Springer, Heidelberg (2016, to appear)
Popov, N., Jebelean, T.: Semantic matching for job search engines - a logical approach. Technical report 13–02, Research Institute for Symbolic Computation, JKU Linz (2013)
Rácz, G., Sali, A., Schewe, K.-D.: Semantic matching strategies for job recruitment: a comparison of new and known approaches. In: Gyssens, M., Simari, G. (eds.) FoIKS 2016. LNCS, vol. 9616, pp. 149–168. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30024-5_9
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Martinez-Gil, J., Paoletti, L., Rácz, G., Sali, A., Schewe, KD. (2016). Maintenance of Profile Matchings in Knowledge Bases. In: Bellatreche, L., Pastor, Ó., Almendros Jiménez, J., Aït-Ameur, Y. (eds) Model and Data Engineering. MEDI 2016. Lecture Notes in Computer Science(), vol 9893. Springer, Cham. https://doi.org/10.1007/978-3-319-45547-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-45547-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45546-4
Online ISBN: 978-3-319-45547-1
eBook Packages: Computer ScienceComputer Science (R0)