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Abstract. Linked Open Data (LOD) become one of the most important sources 
of information allowing enhancing business analyses based on warehoused data 
with external data. However, Data Warehouses (DWs) do not directly cooperate 
with LOD datasets due to the differences between data models. In this paper, 
we describe a conceptual multidimensional model, named Unified Cube, which 
is generic enough to include both warehoused data and LOD. Unified Cubes 
provide a comprehensive representation of useful data and, more importantly, 
support well-informed decisions by including multiple data sources in one anal-
ysis. To demonstrate the feasibility of our proposal, we present an implementa-
tion framework for building Unified Cubes based on DWs and LOD datasets. 

Keywords: Data Warehouse, Linked Open Data, Unified Conceptual Model 

1 Introduction 

In today's highly dynamic business context, decision-makers should access internal 
and external sources to obtain an overall perspective over an organization [2]. Data 

Warehouses (DWs) have been widely used as internal sources to support online, in-
teractive analyses, while Linked Open Data (LOD)1 have become one of the most 
important external information sources allowing enhancing business analyses on a 
web scale [12]. However, warehoused data and LOD follow different models in each 
domain, which makes it difficult to analyze both types of data in a unified way. 
Moreover, dispersion of related data in different schemas results in repetitive searches 
for relevant information in different sources, which reduces the efficiency of analysis.  

Motivating example. In a company selling home appliances, a decision-maker 
looks up in an internal R-OLAP DW to assess the performance of sales staff. The DW 
relates to an analysis subject (i.e. fact), named Sales Analysis, which contains a set of 
numeric indicators (i.e. measures), namely unit price and quantity. Each measure can 
be computed according to three analysis axes (i.e. dimensions): salesman, product 
and time (cf. figure 1(a)). The R-OLAP DW alone does not provide enough infor-
mation to support effective and well-informed decisions. The decision-maker must 
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search for additional information to obtain other complementary perspectives over the 
sales activities. Since the sales of some home appliances (e.g., heaters) are strongly 
influenced by the climate changes, the decision-maker browses in an online dataset 
denoted LOD1 revealing the monthly average temperature according to countries. The 
LOD are published in RDF Data Cube Vocabulary (QB)2 format, which is the current 
W3C standard to publish multidimensional statistical data. Moreover, since retail 
sales may compete with the company's promotions in the same catchment area, the 
decision-maker consults another online dataset denoted LOD2 about the outlet prices 
offered by rival retailers. The LOD2 dataset is published in QB4OLAP, it involves the 
retail price for a class (i.e., type) of merchandise offered by a retailers' shop. Extracts 
of the LOD datasets in tabular form are available in figure 1(b) and (c). 

 

Fig. 1. Extracts of a ROLAP DW and two LOD datasets. 

Without a comprehensive representation of related data, analyses involving several 
sources are carried out in a sequential way. Decision-makers must explore all data 
sources one after another before obtaining an overall vision on an analysis subject. 
Carrying out such analyses is inefficient and difficult, because all schemas do not 
include the same information at the same analytical granularities: (a) the same analy-
sis axes present in different sources may include different analytical granularities, 
e.g., for the temporal analysis axis, the source ROLAP contains three analytical gran-
ularities Year-Month-Date, whereas the sources LOD1 only includes one analytical 
granularity YearMonth; (b) the same data may have different labels in different 
sources e.g., heater is labeled as products' type in the source ROLAP and merchandis-
es' class in the source LOD2; (c) a same analytical granularity may group several 
attributes from heterogeneous sources, e.g., since the decision-maker indicates each 
salesman's team competes with the retailers in one catchment area (cf. figure 1(d)), 
the attribute named Team from ROLAP and the one named CatchmentArea from 
LOD2 refer actually to the same analytical granularity; (d) an analytical granularity 
from one source may belong to a broader one from a different source, e.g., the deci-
sion-maker specifies that several salesman's teams are in charge of the sales in one 
country (cf. figure 1(d)), therefore the analytical granularity about team from ROLAP 
can be aggregated into the one related to country from LOD1; (e) some indicators 
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from different sources can be analyzed together starting from certain analytical granu-
larities, e.g., figure 2 shows a dashboard including related measures sharing common 
analytical granularities. This dashboard allows better illustrating the sales' quantity is 
highly influenced by the price: higher sales quantity of a type of product is due to the 
lower unit price compared to the retail price in the same catchment area.  

 

Fig. 2. A dashboard built on a unified view. 

Contribution. Our aim is to make full use of all relevant data in a decision-making 
context. To this end, we provide decision-makers with a unified view of both ware-
housed data and multidimensional LOD. To facilitate decision-making, the unified 
view should include in a single schema all the indicators along with all available 
analysis axes as well as all the attributes and hierarchies (coming from the heteroge-
neous sources). The unified view should be independent of the modeling solutions of 
the data sources. In the previous example, a unified view would enable decision-
makers to more easily build the dashboard shown in figure 2.  

In this paper, we describe a generic modeling solution for both warehoused data 
and multidimensional LOD. First, we discuss related work about a unified representa-
tion compatible with warehoused data and LOD (cf. section 2). Second, we present 
the conceptual definitions and graphical notations of Unified Cubes (cf. section 3). At 
last, we describe an implementation framework for Unified Cubes (cf. section 4).  

2 Related Work 

The classical method of analyzing data from multiple sources consists of combining 
data from several fact tables according to conformed dimensions under a DW Bus 
Architecture [6]. It has very limited practical utility since all dimensions must share 
the same structure and content across different sources. To overcome this drawback, 
many state-of-art papers [1, 2, 7] draw a roadmap enabling unified analyses to be 
carried out based on all kinds of dimensions. A key step towards such analyses con-
sists of a generic multidimensional representation which is compatible with both 
warehoused data and LOD. Two approaches can be identified from the existing work.  

The first approach aims at reusing classical DW models. The work [3, 9, 11] pro-
poses mechanisms to Extract, Transform and Load (ETL) LOD into a local DW. 
However, warehousing real-time LOD in a stationary data repository is hardly practi-
cal [5]. According to the authors of [4], this approach is not recommended, since it 
collides with the distributed nature and the high volatility of LOD. In terms of analyt-
ical uses, the first approach only supports offline analyses of warehoused data with 



 

preprocessed LOD, which makes it difficult to guarantee the high freshness of the 
obtained information. 

The second approach aims at publishing LOD according to a multidimensional 
structure. The RDF Data Cube Vocabulary (QB) is the current W3C standard to pub-
lish multidimensional statistical data. In [4], the authors propose the QB4OLAP vo-
cabulary which adds more multidimensional characteristics to QB, like multiple ana-
lytical granularities within multiple aggregation paths and the specification of the 
aggregation functions associated to a measure. [8] proposes IGOLAP vocabulary 
allowing representing the correlation relationships between two different dimensions. 
QB, QB4OLAP and IGOLAP are logical models expressed in RDF vocabularies. No 
conceptual model independent of specific modeling languages has been proposed.  

In this paper, we propose a generic multidimensional model which provides a uni-
form vision of both warehoused data and relevant multidimensional LOD. Unlike 
approaches involving ETL processes which collide with the dynamic nature of data, 
our unified data model supports on-the-fly analyses of data in the sources.  

3 The Unified Cube Model 

Unified Cubes provide a single, comprehensive representation of data from one or 
multiple sources. Within a Unified Cube, data are organized according to analysis 
axes (i.e., dimensions) and an analysis subject (i.e., fact). Concepts about Unified 

Cubes will be presented in the following sections.  

3.1 Unified Cube 

In a Unified Cube, a dimension is a union of relevant analytical granularities from 
several sources concerning the same analysis axis, while the fact includes all 
measures concerning the analysis subject. Each measure from one source may only be 
summarizable with regards to the set of analytical granularities from the same source. 
A generalization of the dimension-measure relationship is needed to associate subset 
of analytical granularities within a dimension with a measure in a Unified Cube. 

Definition 1. A Unified Cube is a n-dimensional finite space describing a fact with 
some dimensions. A Unified Cube is denoted as UC={F; D; LM}, where 
· F is a fact containing a set of measures; 
· D={D1;…; Dn} is a finite set of dimensions; 

· LM: 2L \lp
´ ´L \lq®me is a level-measure mapping which associates a subset of 

summarizable analytical granularities (i.e., levels) to a measure me of the fact, such 
as "iÎ[1..n], L \l  (lsÎL

i) corresponds to a subset of levels on the dimension Di 

(DiÎD) which starts from the level ls.  

We propose a graphical notation of Unified Cubes based on the fact-dimension 
model with minor modifications (cf. figure 3). The graphical notation aims at facilitat-
ing data exploitation at the schema level for non-expert users. For readability purpos-
es, concepts involving data instances are not included in the graphical notation.  



 

 

Fig. 3. Graphical notation of Unified Cubes. 

Example. Figure 3 shows a Unified Cube which is built upon the warehoused data 
and the two LOD datasets in the motivating example. It contains three dimensions 
D={DParticipant, DTime , DProduct}. Each measure is associated to its related levels. For the 
sake of simplicity, in the graphical notation the level-measure mappings are repre-
sented only between the lowest levels of sub-dimension and related measures. i.e., 
LM: {{ LProduct\l ; L }®{mRetailPrice}; { LProduct ; L \lTeam

 LTime }® 

{mQunatity; mUnitPrice}; {LTime\lMonth; L \lCountry
}®{mTemperature}}.  

3.2 Analysis Subject: Fact 

A fact models an analysis subject composed of a set of measures. Since the fact of 
a Unified Cube may include measures from DWs and LOD datasets, we should ex-
plicitly indicate how the values of a measure can be accessed from data sources.  

Definition 2. A Fact corresponds to an analysis subject composed of a set of 
measures. A fact is denoted as F={nF; MF} where 
· nF is the name of the fact; 
· M

F={m1;…; mp} is a finite set of numeric indicators called measures. Each meas-
ure me (meÎM

F) is a pair ánm , Em ñ, where nm  is the name of the measure, Em  is 
an extraction formula defined through query algebra (e.g., relational algebra and 
SPARQL algebra3). 

Remark. Extraction formulae enable on-the-fly querying of measures' values during 
analyses. The algebraic representation of extraction formula makes sure its compati-
bility with specific implementation environments of data source. Note that although 
the SPARQL algebra is not yet a W3C standard, it has already been integrated within 
several RDF querying framework. Each algebraic SPARQL expression is translated 
into one SPARQL query which is generic enough to work with all types of LOD da-
tasets. Table 1 shows the algebraic form of commonly used SPARQL queries.  

Table 1. SPARQL queries and their algebraic representation 

SPARQL query SPARQL Algebra 

SELECT * WHERE { ?s ?p ?o} (BGP (TRIPLE ?s ?p ?o)) 
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SELECT ?s ?p WHERE {?s ?p ?o} (PROJECT(?s ?p) (BGP (TRIPLE ?s ?p ?o))) 
SELECT ?o1 ?o2 WHERE{?s ?p ?o1. 
FILTER (?o1 < 5) OPTIONAL  
{?s ?p2 ?o2 . FILTER ( ?o2 > 10 ) }} 

(PROJECT(?o1 ?o2) (FILTER (< ?o1 5) 
(LEFTJOIN(BGP (TRIPLE ?s ?p ?o1))  
(BGP (TRIPLE ?s ?p2 ?o2)) (> ?o2 10)))) 

SELECT ?s (COUNT(?o) as ?nb) 
WHERE {?s ?p ?o} GROUP BY ?s  
HAVING (COUNT(?o) > 10) 

(PROJECT(?s ?nb) (FILTER (> ?.0 10)  
(EXTEND((?nb ?.0)) (GROUP (?s)  
((?.0 (COUNT ?o))) (BGP (TRIPLE ?s ?p ?o)))))) 

Example. The fact named Sales contains four measures, namely mRetailPrice, 
mQuantity, mUnitPrice and mTemperature. The measure mQuantity has an extraction formula 
EmQuantity=P_Key, D_Key, TeamFsum(SalesAnalysis.Quantity). The extraction formula of the 
measure mRetailPrice is defined upon SPARQL algebra, such as: 

 

3.3 Analysis Axis: Dimension  

A dimension may include a single analytical granularity (e.g., dimensions in a QB 
dataset) or multiple analytical granularities. If several analytical granularities are de-
fined, we can find one or several aggregation paths (i.e. hierarchies). Two hierarchies 
from different sources do not always share a common lowest analytical granularities. 
Therefore, we remove the constraint of unique root level in the following definition. 

Definition 3. A dimension corresponds to a one-dimensional space regrouping the 
analytical granularities related to an analysis axis. A dimension is denoted as Di={n ; 
L ; }, where: 
· n  is the dimension name; 
· L ={l1;…; lk} is a set of levels characterizing the dimension, each level models a 

distinct analytical granularity; 
·  is a reflexive binary relation which associates a level la (laÎL ) with its parent 

level lb (lbÎL ), such as la lb. The reflexivity means each level can be seen as a 
parent level of itself, i.e., "lcÎL , lc lc. 

Example. We identify a dimension named Participant which groups all analytical 
granularities related to the participants of the sales activities (i.e., salesmen of the 
organization and their rival retailers). The dimension DParticipant includes three levels, 
such as LParticipant={lShop; lTeam; lCountry}. The binary relation Participant reveals the aggre-
gation paths (i.e., hierarchies) such as lShop

Participant
lTeam

Participant
lCounrty.  

Our definition of dimension is generic enough to model a non-hierarchical dimen-
sion as well. A non-hierarchical dimension (e.g. DQB) is defined with only one level 
(e.g., LQB={l1}) including all the attributes of the dimension.  

Without the constraint of unique root level (i.e., $=1lpÎL , "lqÎL : lp lq
4), a 

dimension may start at any level. This is an important property of a dimension re-
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grouping levels from multiple sources, since the measures from one source may only 
be analyzed according to a subset of levels coming from the same source. We define a 
sub-dimension as a part of dimension along which a measure can be summarized. 

Definition 4. A sub-dimension of Di, denoted 
l

={n l ; L l ; }, corre-

sponds to the part of the dimension  starting with the level ls, where  
·  n l  is the name of the sub-dimension; 
· L l  is the subset of levels, L l ÍL , "liÎL l , ls li; 
·  is the same binary relation of the one on the dimension Di. 

Example. A sub-dimension of the dimension named Time may be l  
named Time-Month with L lMonth

={lMonth; lYear}, which represent the subpart of the 
dimension DTime that measure from the LOD1 dataset can be calculated along.  

3.4 Analytical Granularity: Level 

A level includes a set of attributes describing a distinct analytical granularity. We 
present the definition of a level which (a) indicates the source of each attribute, (b) 
manages heterogeneous representations of attribute instances referring to the same 
concepts and (c) implements the binary relation at the attribute instance level.  

Definition 5. A level represents a distinct analytical granularity on a dimension. A 
level is denoted as ld= {nl ; Ald ; Cld ; Rld}, where: 
· nl  is the name of level; 
· Ald  ={a1;…; ae} is a finite set of attributes. Each attribute ax (axÎA

ld) is a pair ána , 
Ea ñ, where na  is the name of the attribute and Ea  is an extraction formula indi-
cating the instances of ax. The domain of an attribute is denoted as dom(ax).  

· Cld : dom(ax)® dom(ay)  (axÎA
ld , ayÎA

ld \ax) is a symmetric correlative mapping 
which associates an attribute ax with its related ones at the same level.  

· Rld: dom(ay)®dom(az) (axÎA
ld , azÎA

le and ld le.) is a rollup mapping implementing 
the binary relation between two levels. It connects the instances of child attributes 
with the instances of a parent attribute at an adjacent level.  

Example. The level lTeam on the dimension DParticipant contains a finite set of attrib-
utes Al ={aTeam; aCatchmentArea} from the ROLAP DW and the LOD2 dataset. To 
indicate attribute instances in data sources, two extraction formulae are defined within 
the level lTeam: Ea = (SalesAnalysis.Salesman) is associated to the attribute 
aTeam, while the attribute aCatchmentArea is connected with an extraction formula:  

 
The correlative mapping ClTeam associates the instances of the attribute aTeam to its 

related instances of the attribute aCatchmentArea, e.g., ClTeam : {{T1}®{CA1}; 
{T2}®{CA2}; {T3}® {CA3}}. The rollup mapping RlTeam aggregates the instances 
of aTeam and aCatchmentArea at the level lTeam to the ones of aCountry at the level lCountry, such 
as:RlTeam: {{{T1; CA1}; {T2; CA2}}®{Finland}; {T3; CA3} ®{Spain}}. 



 

4 Implementation of Unified Cubes 

In this section, we present an implementation framework for Unified Cubes. By 
building a Unified Cube based on the ROLAP DW and the two LOD datasets of the 
motivating example, we show the feasibility of our proposal. 

4.1 Architecture  

The implementation framework aims at enabling unified analyses of data from DWs 
and multidimensional LOD sources. Two modules are defined within the framework, 
namely Schema and Instance (cf. figure 4). The first module named Schema aims at 
revealing the internal structure of data from multiple sources. It includes a non-
materialized Unified Cube schema with a set of extraction formulae allowing query-
ing sources on-the-fly. The second module, named Instance, is devoted to managing 
related attribute instances scattered in different sources. It contains (a) a toolkit identi-
fying the correlative and rollup relations between attribute instances and (b) a set of 
tables of correspondences materializing the identified relations.  

 

Fig. 4. Implementation framework for Unified Cubes 

4.2 Schema Module 

The implementation of a conceptual Unified Cube schema can take several forms. 
Due to the wide use of relational databases in current information management, in this 
paper we focus on one implementation alternative based on relational views.  

Within our framework, the Schema module hosts (a) a set of non-materialized 
views implementing the components of a schema of Unified Cube and (b) a set of 
queries implementing the extraction formulae of attribute and measure. Specifically, 
each dimension is transformed into a set of views. Each view represents a level with a 
synthetic primary key and the set of attributes of the level. The extraction formula of 
each attribute is translated into an executable query to indicate how attribute instances 
can be accessed from sources. For a pair of views implementing two levels associated 
together through a binary relation, the view of the lower level includes a foreign key 
pointing to the view of the higher level. The fact is also implemented with a set of 
views: each one regroups a set of measures sharing the same sub-dimensions. A set of 
foreign keys pointing to the starting levels of the related sub-dimensions is included in 
each view of fact. We propose the following algorithm to automate the implementa-
tion of Unified Cube schema. 
  



 

Algorithm Unified Cube Schema Implementation 

Input: A Unified Cube={F; D; LM}. 
Output: A set of non-materialized views implementing the Unified Cube schema 
Begin 

1. For each dimension DiÎD 
2.     For each level ldÎL  
3.         Create a view Vd named nl  with a key idVd; 

        For each attribute axÎA
ld  

4.             Add an attribute named na  in the view Vd, associate the attribute with a  
            query Q

ax
 obtained by translating the query algebra of the formula mapa ; 

5.          End for 
6.     End for 
7.     For each pair of views Vd and Ve of the levels ld and le (ld, leÎL Ùld le) 
8.         Add a foreign key idVe in the view Vd pointing to the view Ve;  
9.     End for  
10. End for 
11. For each subset of measures MsubÍM

F sharing the same related levels, such as 
"meÎMsub, $L \lh

´ ´L \lk
ÍL ´…´L , LM: L \lh

´ ´L \lk
®me (r,tÎ[1..n]Ùr£t) 

12.     Create a view Vsub; 
13.     Add a measure named nm  (meÎMsub) in Vsub, associate the measure with a  

    query Q
me

 obtained by translating the query algebra of the formula mapm ; 

14.     For each set of levels L \lj
 (L \lj

ÍL \lh
´ ´L \lk

) of the subdimension D \lj
  

15.         Add a foreign key idVj in Vsub pointing to the view Vj of the level lj; 
16.     End for 
17. End for 
End 

4.3 Instance Module 

Related data are scattered in multiple sources and represented according to differ-
ent modeling vocabularies. The framework must provide methods identifying related 
data from DWs and/or LOD datasets. Once identified, related warehoused data and 
LOD should be kept in a generic, coherent environment to avoid repetitive relevance 
processing during analyses. To this end, the Instance module (a) pre-processes related 
attribute instances involved in correlative and rollup mappings before analyses and 
(b) materializes related data in tables of correspondences for future uses. At the be-
ginning of an analysis process, the framework verifies the last changed date of each 
source to determine if materialized data in the Instance module should be updated.  

Step I: identifying the relevance between data  

In the context of Unified Cubes, the relevance between data from multiple sources 
can be divided into two types, namely direct relevance and deductive relevance. Di-

rect relevance exists between two attribute instances which are already associated 



 

together in sources (e.g., the correlative mapping between the instances of aP_Key and 
those of aP_Name from ROLAP). Deductive relevance, on the other hand, is identified 
by using some processing methods. The Instance module contains a toolkit imple-
menting some most effective methods to facilitate the identification of related data 
involved a Unified Cube. We describe three categories of processing methods that can 
be potentially included in the Instance module to identify related attribute instances. 

Automatic processing methods for correlative mappings.  

We identify two methods allowing automatically computing the deductive rele-
vance between attribute instances involved in a correlative mapping. The first ap-
proach is applicable for data from different LOD datasets. It is based on an intermedi-
ate ontology with a comprehensive coverage of the common concepts in two LOD 
datasets (i.e., containing enough matches between equivalent entities). The second 
approach aims at identifying relevant instances sharing similar labels (e.g., a product's 
type from the ROLAP DW and a merchandise's class from the LOD2 dataset). This 
approach consists of calculating the string-based similarity  of two related attribute 
instances s1 and s2, such as (s1, s2)Î[0..1]. Several amelioration techniques can help 
improving the obtained similarity, such as case normalization (e.g., converting s1 and 
s2 to lowercase) and synonym matching (e.g., using an external thesaurus to associate 
"heater" with its synonym "warmer"). 

Automatic processing methods for rollup mappings.  

The DW domain mainly focuses on the multidimensional structure of data (i.e. 
schema), the rollup mappings between attributes from DWs do not need additional 
processing methods, since they can be directly derived by referring to the multidimen-
sional schema of data source. In the domain of LOD, a dataset, especially real-world 
QB datasets, often only includes independent data instances without an explicitly 
defined schema. Discovering the rollup mapping in previously unknown LOD da-
tasets is not a trivial task. The existence of various proposals in the scientific litera-
ture, such as some computer-assisted approaches presented in [5], shows there is no 
one-size-fits-all method for identifying child-parent relations between all types of 
LOD. The implementation framework should only include methods applicable to the 
hosted Unified Cube. With regard to the running example, we implement an automat-
ic reasoning method based on existing correlative and/or direct rollup mappings. This 
approach is particularly useful to deduce the rollup mapping between an attribute 
from DWs and another one from LOD dataset, such as: let aiDW, aiLODÎA

li , ajDW, 
ajLODÎA

lj  (li lj): (Cli: dom(aiDW)®dom(aiLOD))Ù(Rli: dom(aiLOD) ®dom(ajLOD))Þ$Rli: 
dom(aiDW)®dom(ajLOD), (Rli : dom(aiLOD)®dom(ajLOD))Ù(Clj : dom(ajLOD)®dom(ajDW)) 
Þ$Rli:dom(aiLOD)®dom(ajDW). 

Semi-automatic processing methods for correlative mappings and rollup mappings.  

Besides the automatic approaches, some semi-automatic approaches should also be 
adapted, especially for the relevance between attribute instances which holds only in a 
specific analysis context (e.g., the correlative mapping between aTeam and aCatchmentArea 
in figure 1(d) is valid only if a catchment area of retailer attracts the same clientele of 



 

a salesman's team). In this case, decision-makers should explicitly describe the corre-
spondences between relevant attributes instances. Then the system checks the local 
and overall validity of correlative and rollup mappings in a Unified Cube. Due to 
limited space, more details can be found in our previous work [10].  

Step II: materializing relevant data.  
Direct relevance between attributes is already embedded in the sources thus does 

not need to be materialized in the Instance module. Deductive relevance between 
data, on the other hand, is identified after applying appropriate processing methods. 
To avoid repetitive relevance processing during analyses, correlative mappings and 
rollup mappings involving deductive relevance are materialized in tables of corre-
spondences (cf. figure 5): the table of correspondences implementing the correlative 
mappings associates the instances (i.e., instance) of an attribute (i.e., attribute) to the 
related ones (i.e., cor_ins) of a correlative attribute (i.e., cor_att) within the same 
level, while the table of correspondences materializing the rollup mappings connects 
a set of instances (i.e., child_ins) of a child attribute (i.e., child_att) with a corre-
sponding instance (i.e., parent_ins) of a parent attribute (i.e., parent_att). 

 
(a) Materialized correlative mappings  

 
(b) Materialized rollup mappings 

Fig. 5. Extract of tables of correspondences 

4.4 Experimental Assessments 

The experimental assessments aim at showing the feasibility of our proposal. Spe-
cifically, the internal structure of data from DWs and LOD datasets should be correct-
ly managed by the Schema module, while related data from different sources must be 
identified and materialized within the Instance module within a reasonable time. 

Protocol.  
The data sources are hosted in a Microsoft Windows 7 work stations (Interl(R) i7-

4510U 2GHz CPU, 8GB RAM, SSD 500GB disk). Each source is populated with a 
reasonable amount of synthetic data to avoid timeout during the experimental assess-
ments: the ROLAP contains about 18 million pre-aggregated data in the fact table, 
while the LOD1 and LOD2 datasets respectively include 7240 and 840 observation  
(cf. table 2).  

Table 2. Data Collection 

Source Dimensions 

ROLAP 40 teams ´ 40 products (20 types) ´ 7300 days (360 months, 20 years) 
LOD1 20 countries ´360 months  
LOD2 40 shops (20 catchment area) ´20 merchandise classes  



 

Schema module.  
We firstly implement the schema of the Unified Cube and the extraction formulae 

in the Schema module. After applying the algorithm described in section 4.2, we ob-
tain (a) 8 views implementing the dimensions, (b) 3 views implementing the fact and 
(c) 16 queries translated from extraction formulae. 

 

Fig. 6. Content of the Schema module after implementation 

The non-materialized Unified Cube schema along with extraction queries enables 
on-the-fly analyses of warehoused data and LOD to be carried out in a unified way. 
Details and examples of such analyses are presented in our previous work [10].  

Instance module.  

Identifying relevant data. 

As shown in table 3, four correlative mappings are identified. The correlative 
mapping between aP_Key and aP_Name are obtained by directly referring to the ROLAP 
DW, while the other correlative mappings require additional processing methods. 

Table 3. List of correlative mappings 

Type Mapping  Processing method 

direct dom(aP_Key)®dom(aP_Name) n/a 

deductive 

dom(aType)®dom(aClass) Automatic: string-based similarity 
dom(aType)®dom(aCatchmentArea) Semi-automatic: declarative operator 
dom(aMonth)®dom(aYearMont) Automatic: string-based similarity 

Table 4 shows the rollup mappings in the implemented Unified Cube. To identify 
relevant data involved in rollup mappings, we firstly search for child-parent relations 
embedded in data sources. Four rollup mappings are found by directly referring to the 
ROLAP DW and the LOD2 dataset which both have a well-defined multidimensional 
schema. The other five rollup mappings involving deductive relevance are obtained 
by (a) executing the declarative operator which associates relevant data together ac-
cording to users' needs and (b) using reasoning techniques based on existing rollup 
mappings and correlative mappings.  



 

Remark. Reasoning is an important means to identify rollup mappings in a Uni-

fied Cube, especially for two attributes from different sources without intermediate 
ontological resource. For instance, the rollup mapping RlShop: dom(aShop)® dom(aTeam) 
is obtained by referring to the rollup mapping RlShop : dom(aShop)®dom(aCatchmentArea) 
and the correlative mapping ClTeam: dom(aTeam)®dom(aCatchmentArea). 

Table 4. List of rollup mappings 

Type Mapping Processing methods 

direct 

dom(aP_Key)®dom(aType) n/a 
dom(aD_Key)®dom(aMonth) n/a 
dom(aMonth)®dom(aYear) n/a 
dom(aShop)®dom(aCatchmentArea) n/a 

deductive 

dom(aP_Key)®dom(aClass) Automatic: reasoning 
dom(aShop)®dom(aTeam) Automatic: reasoning 
dom(aCatchmentArea)®dom(aCountry) Automatic: reasoning 
dom(aYearMonth)®dom(aYear) Automatic: reasoning 
dom(aTeam)®dom(aCountry) Semi-automatic: declarative operator 

Without any optimization technique (e.g., parallel computing), defining all deduc-
tive mappings takes about 200 seconds. The execution time remains reasonable in 
consideration of the laptop-level configuration of the working station. 

Materializing relevant data. 

Deductive correlative mappings and rollup mappings are materialized in the In-

stance module. After the implementation, we obtain two tables of correspondences 
containing 400 tuples and 480 tuples for correlative mappings and rollup mappings 
respectively. Comparing to the large volume of data in the sources (cf. table 2), a 
Unified Cube only materializes a relatively small amount of data from different 
sources. Advantage of the partial materialization is twofold: it (a) avoids repetitive 
computing of deductive relevance during analyses and (b) minimizes the cost of up-
dating the materialized data at the beginning of an analysis process. 

5 Conclusion 

Our aim is to make full use of all relevant data to support effective and well-informed 
decisions. To this end, we define a generic conceptual multidimensional model, 
named Unified Cube, which includes data coming from DW and LOD domains. 

A Unified Cube organizes data coming from different sources according to analysis 
axes (i.e., dimensions) and an analysis subject (i.e., fact). A dimension is composed of 
levels which are associated together through a reflexive binary relation. The defini-
tion of dimension is generic enough to model several aggregation paths (i.e., hierar-

chies) sharing no common lowest level as well as a non-hierarchical dimension com-
posed of only one level. A level groups a set of attributes from multiple sources. Each 
attribute is associated with an extraction formula, so that attribute instances that can 
be directly obtained from data sources are not materialized in a Unified Cube. Correl-

ative mappings are defined between related attributes, while rollup mappings manage 



 

child-parent relations among attributes. A fact represents the analysis subject contain-
ing numeric indicators (i.e., measures). Through a level-measure mapping, a measure 
can be associated with its related dimensions starting from any level. We also propose 
an implementation framework compatible with Unified Cubes. By describing how a 
Unified Cube is built from the DW and the LOD datasets of the motivating example, 
we show the feasibility of our proposal. 

In the future, we intend to build Unified Cubes from other LOD formats (e.g. RDF) 
that do not necessarily have a multidimensional structure. The scalability of the pro-
posed implementation framework and the precision of the obtained mapping will also 
be studied with real-world data. A more long-term objective is to study the influences 
of the materialization of source data over analysis efficiency in Unified Cubes. 
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