Skip to main content

Unifying Warehoused Data with Linked Open Data: A Conceptual Modeling Solution

  • Conference paper
  • First Online:
Model and Data Engineering (MEDI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9893))

Included in the following conference series:

Abstract

Linked Open Data (LOD) become one of the most important sources of information allowing enhancing business analyses based on warehoused data with external data. However, Data Warehouses (DWs) do not directly cooperate with LOD datasets due to the differences between data models. In this paper, we describe a conceptual multidimensional model, named Unified Cube, which is generic enough to include both warehoused data and LOD. Unified Cubes provide a comprehensive representation of useful data and, more importantly, support well-informed decisions by including multiple data sources in one analysis. To demonstrate the feasibility of our proposal, we present an implementation framework for building Unified Cubes based on DWs and LOD datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://linkeddata.org.

  2. 2.

    http://www.w3.org/TR/vocab-data-cube.

  3. 3.

    =1represents the unique existential quantification meaning "there exists only one.

References

  1. Abelló, A., Darmont, J., Etcheverry, L., Golfarelli, M., Mazón, J.-N., Naumann, F., Pedersen, T., Rizzi, S.B., Trujillo, J., Vassiliadis, P., Vossen, G.: Fusion cubes: towards self-service business intelligence. Int. J. Data Warehous. Min 9, 66–88 (2013)

    Article  Google Scholar 

  2. Abelló, A., Romero, O., Pedersen, T.B., Berlanga, R., Nebot, V., Aramburu, M.J., Simitsis, A.: Using semantic web technologies for exploratory OLAP: a survey. IEEE Trans. Knowl. Data Eng. 27, 571–588 (2015)

    Article  Google Scholar 

  3. Deb Nath, R.P., Hose, K., Pedersen, T.B.: Towards a Programmable Semantic Extract-Transform-Load Framework for Semantic Data Warehouses, pp. 15–24. ACM Press, New York (2015)

    Google Scholar 

  4. Etcheverry, L., Vaisman, A., Zimányi, E.: Modeling and querying data warehouses on the semantic web using QB4OLAP. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 45–56. Springer, Heidelberg (2014)

    Google Scholar 

  5. Ibragimov, D., Hose, K., Pedersen, T.B., Zimányi, E.: Towards Exploratory OLAP over Linked Open Data–A Case Study. HangZhou, pp 1–18 (2014)

    Google Scholar 

  6. Kimball, R.: The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing, and Deploying Data Warehouses. Wiley, New York (1998)

    Google Scholar 

  7. Laborie, S., Ravat, F., Song, J., Teste, O.: Combining business intelligence with semantic web: overview and challenges. Inform. Organ. Syst. Inf. Decis. INFORSID, 2015 (2015)

    Google Scholar 

  8. Matei, A., Chao, K.-M., Godwin, N.: OLAP for multidimensional semantic web databases. Enabling Real-Time Business Intelligence, pp. 81–96. Springer, Heidelberg (2015)

    Google Scholar 

  9. Nebot, V., Berlanga, R., Pérez, J.M., Aramburu, M.J., Pedersen, T.B.: Multidimensional integrated ontologies: a framework for designing semantic data warehouses. In: Spaccapietra, S., Zimányi, E., Song, I.-Y. (eds.) Journal on Data Semantics XIII. LNCS, vol. 5530, pp. 1–36. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Ravat, F., Song, J., Teste, O.: Designing multidimensional cubes from warehoused data and linked open data. In: IEEE International Conference Research Challenges in Information Science Grenoble, France, pp. 171–182 (2016)

    Google Scholar 

  11. Romero, O., Abelló, A.: Automating multidimensional design from ontologies. In: International Workshop Data Warehouse OLAP, pp. 1–8. ACM Press (2007)

    Google Scholar 

  12. Zorrilla, M.E., Mazón, J.-N., Ferrández, Ó., Garrigós, I., Daniel, F., Trujillo, J.: Business Intelligence Applications and the Web: Models Systems and Technologies. IGI Global, Hershey (2012)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiefu Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ravat, F., Song, J. (2016). Unifying Warehoused Data with Linked Open Data: A Conceptual Modeling Solution. In: Bellatreche, L., Pastor, Ó., Almendros Jiménez, J., Aït-Ameur, Y. (eds) Model and Data Engineering. MEDI 2016. Lecture Notes in Computer Science(), vol 9893. Springer, Cham. https://doi.org/10.1007/978-3-319-45547-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45547-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45546-4

  • Online ISBN: 978-3-319-45547-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics