Abstract
Large-scale data analysis is an important activity in many organizations that typically requires the deployment of data-intensive workflows. As data is processed these workflows generate large intermediate results, which are typically pipelined from one operator to the following. However, if materialized, these results become reusable, hence, subsequent workflows need not recompute them. There are already many solutions that materialize intermediate results but all of them assume a fixed data format. A fixed format, however, may not be the optimal one for every situation. For example, it is well-known that different data fragmentation strategies (e.g., horizontal and vertical) behave better or worse according to the access patterns of the subsequent operations. In this paper, we present ResilientStore, which assists on selecting the most appropriate data format for materializing intermediate results. Given a workflow and a set of materialization points, it uses rule-based heuristics to choose the best storage data format based on subsequent access patterns. We have implemented ResilientStore for HDFS and three different data formats: SequenceFile, Parquet and Avro. Experimental results show that our solution gives 18 % better performance than any solution based on a single fixed format.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
A Pig operation combining GROUP BY and JOIN.
- 12.
- 13.
- 14.
References
Abelló, A., Ferrarons, J., Romero, O.: Building cubes with MapReduce. In: Proceedings of the DOLAP (2011)
Alagiannis, I., Idreos, S., Ailamaki, A.: H2O: a hands-free adaptive store. In: Proceedings of the SIGMOD (2014)
Chen, Y., Alspaugh, S., Katz, R.: Interactive analytical processing in big data systems: a cross-industry study of MapReduce workloads. In: Proceedings of the VLDB (2012)
Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: Proceedings of the OSDI (2004)
DeWitt, D.J., Halverson, A., Nehme, R., Shankar, S., Aguilar-Saborit, J., Avanes, A., Flasza, M., Gramling, J.: Split query processing in polybase. In: Proceedings of the SIGMOD (2013)
Elghandour, I., Aboulnaga, A.: ReStore: reusing results of MapReduce jobs. In: Proceedings of the VLDB (2012)
Elmore, A., Duggan, J., Stonebraker, M., Balazinska, M., Gadepally, V., Heer, J., Howe, B., Kepner, J., Kraska, T., Madden, S., Maier, D., Mattson, T., Papadopoulos, S., Parkhurst, J., Tatbul, N., Vartak, M., Zdonik, S.: A demonstration of the BigDAWG polystore system. In: Proceedings of the VLDB (2015)
Färber, F., Cha, S.K., Primsch, J., Bornhovd, C., Sigg, S., Lehner, W.: SAP HANA database - data management for modern business applications. In: Proceedings of the SIGMOD Record (2011)
Floratou, A., Patel, J.M., Shekita, E.J., Tata, S.: Column-oriented storage techniques for MapReduce. In: Proceedings of the VLDB (2011)
Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: Proceedings of the SOSP (2003)
He, Y., Lee, R., Huai, Y., Shao, Z., Jain, N., Zhang, X., Xu, Z.: RCFile: a fast and space-efficient data placement structure in MapReduce-based warehouse systems. In: Proceedings of the ICDE (2011)
Idreos, S., Alagiannis, I., Johnson, R., Ailamaki, A.: Here are my Data Files. Here are my Queries. Where are my Results? In: Proceedings of the CIDR (2011)
Jindal, A., Quian-Ruiz, J.-A., Dittrich, J.: Trojan data layouts: right shoes for a running elephant. In: Proceedings of the SOCC (2011)
Jindal, A., Quian-Ruiz, J.-A., Dittrich, J.: WWHow! freeing data storage from cages. In: Proceedings of the CIDR (2013)
Jovanovic, P., Romero, O., Simitsis, A., Abelló, A.: Incremental consolidation of data-intensive multi-flows. In: Proceedings of the TKDE (2016)
Kalavri, V., Shang, H., Vlassov, V.: m2r2: a framework for results materialization and reuse. In: Proceedings of the BDSE (2013)
Raman, V., Attaluri, G., Barber, R., Chainani, N., Kalmuk, D., KulandaiSamy, V., Leenstra, J., Lightstone, S., Liu, S., Lohman, G.M., Malkemus, T., Mueller, R., Pandis, I., Schiefer, B., Sharpe, D., Sidle, R., Storm, A., Zhang, L.: DB2 with BLU acceleration: so much more than just a column store. In: Proceedings of the VLDB (2013)
Schaarschmidt, M., Gessert, F., Ritter, N.: Towards automated polyglot persistence. In: Proceedings of the BTW (2015)
Acknowledgments
This research has been funded by the European Commission through the Erasmus Mundus Joint Doctorate “Information Technologies for Business Intelligence - Doctoral College” (IT4BI-DC).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Munir, R.F., Romero, O., Abelló, A., Bilalli, B., Thiele, M., Lehner, W. (2016). ResilientStore: A Heuristic-Based Data Format Selector for Intermediate Results. In: Bellatreche, L., Pastor, Ó., Almendros Jiménez, J., Aït-Ameur, Y. (eds) Model and Data Engineering. MEDI 2016. Lecture Notes in Computer Science(), vol 9893. Springer, Cham. https://doi.org/10.1007/978-3-319-45547-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-45547-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45546-4
Online ISBN: 978-3-319-45547-1
eBook Packages: Computer ScienceComputer Science (R0)