
ar
X

iv
:2

30
6.

01
34

9v
1

 [
cs

.C
C

]
 2

 J
un

 2
02

3

The Maximum Matrix Contraction problem

Dimitri Watel1,2 and Pierre-Louis Poirion1,3

1 CEDRIC-CNAM, 292 rue du faubourg Saint Martin, 75003, Paris, FRANCE
2 ENSIIE, 1 Square de la résistance, Evry, FRANCE dimitri.watel@ensiie.fr,

3 ENSTA Paristech pierre-louis.poirion@ensta-paristech.fr

Abstract. In this paper, we introduce the Maximum Matrix Contrac-

tion problem, where we aim to contract as much as possible a binary
matrix in order to maximize its density. We study the complexity and
the polynomial approximability of the problem. Especially, we prove this
problem to be NP-Complete and that every algorithm solving this prob-
lem is at most a 2

√
n-approximation algorithm where n is the number

of ones in the matrix. We then focus on efficient algorithms to solve the
problem: an integer linear program and three heuristics.
Keywords: Complexity, Approximation algorithm, Linear Programming

1 Introduction

In this paper, we are given a two dimensional array in which some entries contain
a dot and others are empty. Two lines i and i+ 1 of the grid can be contracted
by shifting up every dot of line i + 1 and of every line after. Two columns j
and j + 1 of the grid can be contracted by shifting left the corresponding dots.
However, such a contraction is not allowed if two dots are brought into the same
entry. The purpose is maximize the number of neighbor pairs of dots (including
the diagonal ones). An illustration is given in Figure 1.

• •

•

• •

•

4

3

2

1

1 2 3 4

(a)

• • •

• •

•

3/4

2

1

1 2 3 4

(b)

• • •

• •

•

3/4

2

1

1/2 3 4

(c)

Fig. 1: In Figure 1.a, we give a 4 × 4 grid containing 6 dots. Valid contractions
are represented by dotted lines and columns. It is not allowed to contract lines
1 and 2 because the two dots (1;1) and (2;1) would be brought into the same
entry. Figure 1.b is the result of the contraction of lines 3 and 4 and Figure 1.c
is the contraction of columns 1 and 2. The number of neighbor pairs in each grid
is respectively 4, 7 and 10.

http://arxiv.org/abs/2306.01349v1

Motivation. This problem has an application in optimal sizing of wind-farms [1]
where we must first define, from a given set of wind-farms location, the neighbor-
hood graph of this set, i.e. the graph such that two wind farms are connected if
and only if their corresponding entries in the grid are neighbors. More precisely,
given a set of points in the plane, we consider a first grid-embedding such that
any two points are at least separated by one vertical line and one horizontal
line. Then, we consider the problem of deciding which lines and columns to con-
tract such that the derived embedding maximize the density of the grid, i.e., the
number of edges in the corresponding neighbor graph.

Contributions. In this paper, we formally define the grid contraction problem
as a binary matrix contraction problem in which every dot is a 1 and every other
entry is 0. We study the complexity and the polynomial approximability of the
problem. Especially, we prove this problem to be NP-Complete. Nonetheless,
every algorithm solving this problem is at most a 2

√
n-approximation algorithm

where n is the number of 1 in the matrix. We then focus on efficient algorithms
to solve the problem. We first investigate the mathematical programming formu-
lation of MMC. We give two formulations: a straightforward non-linear program
and a linear program. Secondly, we describe three polynomial heuristics for the
problem. We finally give numerical tests to compare the performances of the
linear program and each algorithm.

In Section 2, we give a formal definition of the problem. In Section 3, we
prove that the corresponding decision problem is NP-complete, then we give, in
Section 4 some results about approximability of the problem. In Section 5 we
derive a linear integer program for the model and run some experiments, then
in the next section, we present and compare the three different heuristics.

2 Problem definition

The following definitions formalize the problem we want to solve with binary
matrices. A binary matrix is a matrix with entries from {0, 1}. Such a matrix
modelizes a grid in which each dot is a 1 in the matrix.

Definition 1. Let M be a binary matrix with p lines and q columns. For each
i ∈ J1; p− 1K∗ and each j ∈ J1; q − 1K, we define the line contraction matrix Li

and the column contraction matrix Cj by

Li =

1 2 i p

1 0 · · · 0 0 0 0 0 · · · 0 1
0 1 · · · 0 0 0 0 0 · · · 0 2
...
...
. . .

...
...
...
...
...
. . .

...
0 0 · · · 1 0 0 0 0 · · · 0
0 0 · · · 0 1 1 0 0 · · · 0 i
0 0 · · · 0 0 0 1 0 · · · 0
0 0 · · · 0 0 0 0 1 · · · 0
...
...
. . .

...
...
...
...
...
. . .

...
0 0 · · · 0 0 0 0 0 · · · 1
0 0 · · · 0 0 0 0 0 · · · 0 p

Cj =

1 2 j q

1 0 · · · 0 0 0 0 · · · 0 0 1
0 1 · · · 0 0 0 0 · · · 0 0 2
...
...
. . .

...
...
...
...
. . .

...
...

0 0 · · · 1 0 0 0 · · · 0 0
0 0 · · · 0 1 0 0 · · · 0 0 j
0 0 · · · 0 1 0 0 · · · 0 0
0 0 · · · 0 0 1 0 · · · 0 0
0 0 · · · 0 0 0 1 · · · 0 0
...
...
. . .

...
...
...
...
. . .

...
...

0 0 · · · 0 0 0 0 · · · 1 0 q

.

∗The meaning of Jp; qK is the list [p, p+ 1, . . . , q].

The size of Li is p× p and the size of Cj is q × q.

Definition 2. Let M be a binary matrix of size p × q, I = [i1, i2, . . . , i|I|] a
sublist of J1; p− 1K and J = [j1, j2, . . . , j|I|] a sublist of J1; q − 1K. We assume I
and J are sorted. We define the contraction C(M, I, J) of the lines I and the
columns J of M by the following matrix

C(M, I, J) =

|I|
∏

k=1

Lik

 ·M ·

1
∏

k=|J|

Cjk

 .

Example 1. Let M be the matrix corresponding to the grid of Figure 1.a. The
following contraction gives the grid 1.c:

C(M, [3], [1]) = L3 ·M · C1 =

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0

·

1 0 0 0
1 0 1 0
0 0 1 0
0 1 0 1

·

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

=

1 0 0 0
1 1 0 0
1 1 1 0
0 0 0 0

Definition 3. A contraction C(M, I, J) is said valid if and only if C(M, I, J)
is a binary matrix.

Example 2. The following contraction is not valid :

C(M, [], [1, 2]) = M · C2 · C1 =

1 0 0 0
1 0 1 0
0 0 1 0
0 1 0 1

·

1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0

·

1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

=

1 0 0 0
2 0 0 0
1 0 0 0
1 1 0 0

Definition 4. Let M be a binary matrix of size p×q. The density is the number
of neighbor pairs of 1 in the matrix (including the diagonal pairs). This value
may be computed with the following formula :

d(M) =
1

2
·
∑

i,j

(

Mi,j ·
(

1
∑

δ=−1

1
∑

γ=−1

Mi+δ,j+γ

)

− 1

)

where we define that Mi,j = 0 if (i, j) /∈ J1; p− 1K × J1; q − 1K

Problem 1. Maximum Matrix Contraction problem (MMC). Given a binary ma-
trix M of size p× q such that n entries equal 1 and p · q − n entries equal 0, the
Maximum Matrix Contraction problem consists in the search for two sublists I
of J1; p− 1K and J of J1; q− 1K such that the contraction C(M, I, J) is valid and
maximizes d(C(M, I, J)).

We study in the next two sections the complexity and the approximability
of this problem.

3 Complexity

This section is dedicated to proving the NP-Completeness of the problem.

Theorem 1. The decision version of (MMC) is NP-Complete.

Proof. Let M be an instance of MMC. Given an integerK, a sublist I of J1; p−1K
and a sublist J of J1; q − 1K, we can compute in polynomial time the matrix
C(M, I, J) and check if the contraction is valid and if d(C(M, I, J)) ≥ K. This
proves the problem belongs to NP.

In order to prove the NP-Hardness, we describe a polynomial reduction from
the NP-Complete Maximum Clique problem [2]. Lets G(V,E) be an instance of
the Maximum Clique problem, we build an instance M of MMC with p = q =
(4|V |+ 6). We arbitrarily number the nodes of G : V = {v1, v2, . . . v|V |}.

Let li and ci be respectively the 6+4(i−1)+1-th line and the 6+4(i−1)+1-
th column. We associate the four lines li, li+1, li+2, li+3 and the four columns
ci, ci + 1, ci + 2, ci + 3 to vi. The key idea of the reduction is that each node
v is associated with two 1 of the matrix. If we choose the node v to be in the
clique, then, firstly, the two 1 associated with v are moved next to each other
and this increases the density by one; and secondly, for every node w such that
(v, w) 6∈ E, the two 1 associated to cannot be moved anymore.

A complete example is given in Figure 2. For each node vi, we set Mli,ci =
Mli+2,ci+2 = 1. If the nodes vi and vj are not linked with an edge, we set
Mli,cj = Mli+1,cj+1 = 1. If, on the contrary, there is an edge (vi, vj), then the
intersections of the lines of vi and the column of vj is filled with 0. Finally, we
add some 1 in the six first columns and the six first lines of the matrix such that
only the contractions of the line li and the column ci for i ∈ J1;nK are valid.

The initial density in this matrix is d0 = 11 + 6|V | + (|V |(|V | − 1) − 2|E|).
Note that, in order to add one to the density of the matrix, the only way is to
choose a node vi and contract the column ci and the line li. If the column ci is
contracted and if (vi, vj) 6∈ E, the two entries Mlj ,ci and Mlj+1,ci+1 are moved
on the same column. Similarly, if the line li is contracted, the two entries Mli,cj

and Mli+1,cj+1 are moved on the same line. This prohibits the contraction of
the line lj and the column cj . Consequently, in order to add C to the density,
we must find a clique of size C in the graph and contract every line and column
associated with the nodes of that clique.

Thus, there is a clique of size K if and only if there is a feasible solution for
M of density d0 +K. This concludes the proof of NP-Completeness.

The Maximum Clique problem cannot be approximated to within |V | 12−ε

in polynomial time unless P = NP [3]. Unfortunately, the previous reduction
cannot be used to prove a negative approximability result occurs for MMC.
Indeed, the density of any feasible solution of the MMC instance we produce is
between d0+1 and d0+ |V |, with d0 = O(|V |2−|E|). Consequently, the optimal
density is at most (1 + 1/|V |) times the worst density. A way to prove a higher
inapproximability ratio for MMC would be to modify the reduction such that
the gap between the optimal solution and another feasible solution increases.

1 2

3 4

v1

v2

v3

v4

v1 v2 v3 v4

1 1 1 1 1 1

1

1

1

1

1

1

1

1 1

11

1

1

1 1

11

1

1

1 1

11

1

1

1 1

11

1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 2: This figure illustrates, on the left, a graph in which we search for a max-
imum clique and, on the right, the matrix obtained built with the reduction.
We do not show the 0 entries of the matrix for readability. The dotted lines and
columns represent the valid contractions.

In the next section, we prove that a n
1

2
−ε harness ratio would almost tight

the approximability of MMC as there exists a 2
√
n-approximation algorithm.

4 Approximability

In this section we define the notion of maximal feasible solution and prove that
every algorithm returning a maximal feasible solution is a 2

√
n-approximation

where n is the number of 1 in the matrix.

Definition 5. We say a feasible solution is maximal if it is not strictly included
in another feasible solution. In other words, when all the lines and columns of
that solution are contracted, no contraction of any other line or column is valid.

Lemma 1. Let M be an instance of MMC, (I, J) be a maximal feasible solution
and M ′ = C(M, I, J) then 2

√
n ≤ d(M ′) ≤ 4n.

Proof. A 1 in a matrix cannot have more than 8 neighbors, thus the density of
M ′ is no more than 4n.

Let p′ and q′ be respectively p−|I| and q−|J |. For each line i ∈ J1, p′− 1K of
M ′, there is a column j such thatM ′

i,j = M ′
i+1,j = 1, otherwise we could contract

line i and (I, J) would not be maximal. Similarly for each column j ∈ J1, q′−1K.

Thus d(M ′) ≥ p′ + q′ where p′ × q′ is the size of M ′. From the inequality of
arithmetic and geometric means, we have p′+ q′ ≥ 2

√
p′ · q′ and, as M ′ contains

n entries such that M ′
i,j = 1, p′ · q′ ≥ n. Thus p′ + q′ ≥ 2

√
n.

From the upper bound and the lower bound given in the previous lemma, we
can immediately prove the following theorem.

Theorem 2. An algorithm returning any maximal solution of an instance of
MMC is a 2

√
n-approximation.

Theorem 2 proves a default ratio for every algorithm trying to solve the
problem. Note that there are instances in which the ratio between an optimal
density and the lowest density of a maximal solution is O(

√
n). An example

is given in the external report in [4]. In Section 6, we describe three natural
heuristics to solve the problem. We show in [4] that their approximability ratio
is O(

√
n) by exhibiting a worst case instance.

Determining if MMC can be approximated to within a constant factor is an
open question. As it was already pointed at the end of Section 3, the problem
may possibly be not approximable to within n

1

2
−ε and this would almost tight

the approximability of MMC.
The next two sections focus on efficient algorithms to solve the problem. The

next section is dedicated to the mathematical programming methods.

5 Linear integer programming

For i ∈ J1; p− 1K (resp. j ∈ J1; q − 1K), let xi (resp. yj) be the binary variable
such that xi = 1 (resp. yj = 1) if and only if line i is contracted, i.e. i ∈ I (resp.
column j is contracted, i.e. j ∈ J). From the definitions of Section 2, we can
model the MMC problem by the following non-linear binary program:

(∗)

max
x,y

d(A)

A =
p−1
∏

i=1

((Li − Ip)xi + Ip)M
1
∏

j=q−1

((Cj − Iq)yj + Iq)

Ai,j ≤ 1, ∀(i, j) ∈ J1; p− 1K × J1; q − 1K
xi, yj ∈ {0, 1}

where Ip denotes the identity matrix of size p and where the formula of d(A) is
the one given in Definition 4.
Although this formulation is very convenient to write the mathematical model,
it is intractable as we would need to add an exponential number of linearizations:
for all subset I, J ⊆ J1; p− 1K × J1; q − 1K we would need a variable xI =

∏

i∈I

xi

and yI =
∏

j∈J

yj.

We now present a linear integer programming model for the MMC problem:
instead of linearizing the products

∏

i∈I

xi and
∏

j∈J

yj, we cut the product

A =
p−1
∏

i=1

((Li − Ip)xi + Ip)M
1
∏

j=q−1

((Cj − Iq)yj + Iq) in T = p+ q− 1 time-steps.

More precisely, define A(1) = M ; for all t = 2, ..., p, we define by A(t) the matrix
which is computed after deciding the value of yj for j ≥ p− t+ 1; similarly, for
all p+1 ≤ t ≤ T , A(t) is determined by the value of yj for all j and by the value
of xi for i ≥ q − t+ p. We obtain the following program:

(P)

max
x,y

d(A(T))

A(t+1) = ((Lp−t − Ip)xp−t + Ip)A
(t) ∀1 ≤ t ≤ p− 1

A(t+1) = A(t)((Cq−t+p − Iq)yq−t+p + Iq) ∀p ≤ t ≤ T

A
(t)
i,j ≤ 1, ∀(i, j, t) ∈ J1; p− 1K × J1; q − 1K × J2;T K

xi, yj ∈ {0, 1}

We can easily linearize the model above by introducing, for all (i, j, t) ∈ J1; p−
1K×J1; q−1K×J2;T K ri,j,t = A

(t)
i,j ∗xp−t if 1 ≤ t ≤ p−1 and ri,j,t = A

(t)
i,j ∗yq−t+p if

p+1 ≤ t ≤ T , noticing that the variables A
(t)
i,j , xt, yt are all binary. Finally, after

linearizing the product A
(T)
i,j A

(T)
k,l in the objective function, d(A(T)), we obtain a

polynomial size integer programming formulation of the MMC problem.

5.1 Numerical results

We test the proposed model using IBM ILOG CPLEX 12.6. The experiments are
performed on an Intel i7 CPU at 2.70GHz with 16.0 GB RAM. The models are
implemented in Julia using JuMP [5]. The algorithm is run on random squared
matrices. Given a size p and a probability r, we produce a random binary matrix
M of size p×p such that Pr(Mi,j = 1) = r. The expected value of n is then r ·p2.
We test the model for n ∈ {6, 9, 12} for a probability r ∈ {0.1, 0.15, 0.2, 0.25, 0.3}
and we report the optimal value d∗ and the running time. For each value of p
and r, 10 random instances are created, whose averages are reported on Table 1.

Table 1: Test of random instances for the integer linear program model.

r

0.1 0.15 0.20 0.25 0.3

d∗ time (s) d∗ time (s) d∗ time (s) d∗ time (s) d∗ time (s)

(p,q)=(6,6) 6.0 0.3 4.1 0.26 12.1 0.2 15.3 0.28 22.0 0.15

(p,q)=(9,9) 15.1 5.3 22.1 5.1 32.3 7.8 36.5 7.0 44.5 3.4

(p,q)=(12,12) 30.8 171.6 48.0 281.2 55.0 183.0 64.4 101.0 71.0 95.1

We notice that the integer programming model is not very efficient to solve
the problem. For p = 15, in most of the cases, CPLEX needs to run more than
2 hours to solve the model.

6 Polynomial heuristics

In this section, we describe three heuristics for MMC : a first-come-first-served
algorithm and two greedy algorithms.

6.1 The LCL heuristic

This algorithm is a first-come-first-served algorithm. It is divided into two parts:
the Line-Column (LC) part and the Column-Line (CL) part.

The LC part computes and returns a maximal feasible solution MLC by,
firstly, contracting a maximal set of lines ILC and, then, by contracting a maxi-
mal set of columns JLC . The algorithm builds ILC as follows: it checks for each
line from p − 1 down to 1 if the contraction of that line is valid. In that case,
the contraction is done and the algorithm goes on. JLC is built the same way.

The CL part computes and returns a maximal feasible solution MCL by
starting with the columns and ending with the lines. The LCL algorithm then
returns the solution with the maximum density.

The advantage of such an algorithm is its small time complexity.

Theorem 3. The time complexity of the LCL algorithm is O(p · q).

Proof. The four sets ILC , JLC , ICL and JCL can be implemented in time O(p·q)
using an auxiliary matrix M ′. The proof is given for the first one, the implemen-
tation of the three other ones is similar. At first, we copy M into M ′. For each
line i from p− 1 to 1 of M ′, we check with 2q comparisons if there is a column
j such that M ′

i,j = M ′
i+1,j = 1. In that case, we do nothing. Otherwise, we add

i to ILC and we replace line i with the sum of the i-th and the i+ 1-th lines.
Finally, given a matrix M and a set of lines I, one can compute C(M, I, ∅)

in time O(p · q) by, firstly, computing in time O(p) an array A of size p such that
Ai is the number of lines in I strictly lower than i and, secondly, returning a
matrix C of size p− |I| × q such that Ci−Ai,j = Mi,j .

Remark 1. Note that, if there is at most one 1 per line of the matrix of the ma-
trix, the LCL algorithm is asymptotically a 4-approximation when n approaches
infinity. Indeed, the LC part returns a line matrix in which each entry is a 1.
The density of this solution is n−1. As the maximum density is 4n by Lemma 1,
the ratio is 4 n

n−1 . On the contrary, an example given in the external report [4]

proves that this algorithm is, in the worst case, at least a O(
√
n)-approximation.

6.2 The greedy algorithm

The greedy algorithm tries to maximize the density at each iteration. The al-
gorithm computes d(C(M, {i}, ∅)) and d(C(M, ∅, {j})) for each line i and each
column j if the contraction is valid. It then chooses the line or the column max-
imizing the density. It starts again until the solution is maximal.

Theorem 4. The time complexity of the Greedy algorithm is O(p2 · q2).

Proof. There are at most p · q iterations. At each iteration, we compute one
density per line i and one density per column j. The density of C(M, {i}, ∅)
is the density of M plus the number of new neighbor pairs of 1 due to the
contraction of lines i and i+1. The increment can be computed in time O(q) as
there are at most three new neighbors for each of the q entries of the four lines
i − 1 to i + 2. Similarly, the density of C(M, ∅, {j}) can be computed in time
O(p). Thus one iteration takes O(p · q) iterations.

Remark 2. We prove in [4] that the greedy algorithm is at least a O(
√
n)-

approximation algorithm.

6.3 The neighborization algorithm

The neighborization algorithm is a greedy algorithm trying to maximize, at each
iteration, the number of couple of entries that can be moved next to each other
with a contraction. This algorithm is designed to avoid the traps in which the
LCL algorithm and the Greedy algorithm fall in by never contracting lines and
columns that could prevent some 1 entries to gain a neighbor.

We define a function N from (J0; p − 1K × J0; q − 1K)2 to {0, 1}. For each
couple c = ((i, j), (i′, j′)) such that Mi,j = 0 or Mi′,j′ = 0, N(c) = 0. Otherwise,
N(c) = 1 if and only if there is a sublist of lines I and a sublist of columns J such
that C(M, I, J) is valid and such that the two entries are moved next to each
other with this contraction. Finally, we define N(M) as the sum of all the values
N((i, j), (i′, j′)). The algorithm computes N(C(M, {i}, ∅)) and N(C(M, ∅, {j}))
for each line i and each column j if the contraction is valid. It chooses the line or
the column maximizing the result and starts again until the solution is maximal.

Theorem 5. The time complexity of the Greedy algorithm is O(n2·p3·q3·(p+q)).

Proof. Let M be a binary matrix, we first determine the time complexity we
need to compute N(M). Let ((i, j), (i′, j′)) be two coordinates such that Mi,j =
Mi′,j′ = 1. We assume i < i′ and j < j′. The two entries may be moved
next to each other if i′ − i − 1 of the i′ − i lines and j′ − j − 1 of the j′ − j
columns between the two entries may be contracted and this can be done in time
O(p · q · (j′ − j) · (i′ − i)) = O(p2 · q2). As there are at most n2 entries satisfying
Mi,j = Mi′,j′ = 1, we need O(n2 · p2 · q2) operations to compute N(M).

As there are at most p ·q iterations. At each iteration, we computes one value
per line i and one value per column j in time O(n2 ·p2 ·q2). The time complexity
is then O(n2 · p3 · q3 · (p+ q)).

Remark 3. We prove in [4] that the neighborization algorithm is at least a
O(

√
n)-approximation algorithm.

6.4 Numerical results

In this last subsection, we give numerical results of the three algorithms in order
to evaluate their performances.

The experiments are performed on an Intel(R) Core(TM) i7-4810MQ CPU
@ 2.80GHz processor with 8Go of RAM. The algorithms are implemented with
Java 8§. The algorithms are run on random squared matrices. Given a size p and
a probability r, we produce a random binary matrix M of size p× p such that
Pr(Mi,j = 1) = r. The expected value of n is then r · p2. Before executing each
algorithm, we first reduce the size of each instance by removing every column
and line with no 1.

Small instances. We first test the three algorithms on small instances on which
we can compute an exact brute-force algorithm. This algorithm exhaustively
enumerates every subset of lines and columns for which the contraction is valid
and returns the solution with maximum density. The results are summarized on
Table 2 and Table 3.

We can observe from Table 2 that the running time first increases when r
grows and then decreases. Similarly, the number of times the heuristics return
an optimal solution first decreases and then increases. The first behavior is ex-
plained by the fact that the size of instances with small values of n can be
reduced. On the other hand, if r is high, the number of lines and columns of
which the contraction is not valid increases and, then, the search space of the
algorithms is shortened. Considering the running times, as it was predicted by
the time complexities, the LCL and the greedy heuristics are the fastest algo-
rithms. We can observe that the neighborization algorithm can be slower than
the exact algorithm on small instances because the running time of the former
is more influenced by n than the latter. However, we do not exclude the fact the
implementation of the neighborization algorithm may be improved. Considering
the quality of the solutions returned by the algorithms, according to Tables 2
and 3, the neighborization heuristic shows better performances than the greedy
and the LCL algorithms.

Big instances. We then test the two fastest algorithms LCL and Greedy on
bigger instances. The results are given on Table 4. Four interesting differences
with Table 2 emerges from Table 4. Firstly, the LCL algorithm is faster than
the greedy algorithm. This is coherent with the time complexities. Secondly, the
LCL algorithm does not follow the same behavior as the exact algorithm and the
neighborization heuristic for small instances: the running time increases with r
even if the search space is shortened. Indeed, contrary to the three other algo-
rithms, the implementation does not depend on this search space. Thirdly, the
running time of the greedy algorithm first increases with r, then decreases and
and finally slowly increases again. This last increase is due to the computation
time of the density and the line and columns that can be contracted. Finally,
the solution returned by the LCL algorithm seems to be better for small values
of r and, on the other hand, the greedy algorithm returns better densities for
middle values. The two algorithms are equivalent for high values of r because
those instances can probably not be contracted.

§The implementations can be found at https://github.com/mouton5000/MMCCode .

https://github.com/mouton5000/MMCCode

Table 2: This table details the results for each algorithm. For each values of p
and r, the algorithms are executed on 50 instances. We give for each heuristic the
mean running time in milliseconds, the mean ratio between the optimal density
d∗ and returned density d and the number of instances for which the ratio is 1.

Exact LCL Greedy Neigh.

p r time (ms) time (ms) d∗

d
d = d∗ time (ms) d∗

d
d = d∗ time (ms) d∗

d
d = d∗

5

0.01 < 1 ms < 1 ms 1 50 < 1 ms 1 50 < 1 ms 1 50

0.02 < 1 ms < 1 ms 1 50 < 1 ms 1 50 < 1 ms 1 50

0.03 < 1 ms < 1 ms 1 50 < 1 ms 1 50 < 1 ms 1 50

0.04 < 1 ms < 1 ms 1.00 49 < 1 ms 1 50 < 1 ms 1 50

0.05 < 1 ms < 1 ms 1.00 48 < 1 ms 1 50 < 1 ms 1 50

0.1 < 1 ms < 1 ms 1.00 46 < 1 ms 1.00 49 < 1 ms 1 50

0.2 < 1 ms < 1 ms 1.00 45 < 1 ms 1.00 46 < 1 ms 1 50

0.3 < 1 ms < 1 ms 1.00 43 < 1 ms 1.00 45 2.52 1.00 49

10

0.01 < 1 ms < 1 ms 1.00 48 < 1 ms 1 50 < 1 ms 1 50

0.02 < 1 ms < 1 ms 1.02 46 < 1 ms 1.00 46 < 1 ms 1 50

0.03 < 1 ms < 1 ms 1.04 37 < 1 ms 1.00 41 1.22 1.00 49

0.04 < 1 ms < 1 ms 1.02 35 < 1 ms 1.00 39 1.92 1.00 49

0.05 < 1 ms < 1 ms 1.10 28 < 1 ms 1.00 26 1.98 1.00 46

0.1 2.60 < 1 ms 1.00 19 < 1 ms 1.00 21 15.50 1.00 34

0.2 < 1 ms < 1 ms 1.00 23 < 1 ms 1.00 23 66.42 1.00 40

0.3 < 1 ms < 1 ms 1.00 31 < 1 ms 1.00 34 66.64 1.00 42

15

0.01 < 1 ms < 1 ms 1.16 33 < 1 ms 1.00 43 < 1 ms 1 50

0.02 < 1 ms < 1 ms 1.06 21 < 1 ms 1.00 25 1.64 1.00 40

0.03 < 1 ms < 1 ms 1.08 17 < 1 ms 1.00 17 4.36 1.00 40

0.04 3.76 < 1 ms 1.02 11 < 1 ms 1.00 15 14.84 1.00 34

0.05 9.40 < 1 ms 1.02 18 < 1 ms 1.00 14 38.96 1.00 33

0.1 295.74 < 1 ms 1.00 6 < 1 ms 1.00 8 355.54 1.00 19

0.2 28.24 < 1 ms 1.00 14 < 1 ms 1.00 18 892.10 1.00 33

0.3 < 1 ms < 1 ms 1.00 30 < 1 ms 1.00 37 541.58 1.00 45

20

0.01 < 1 ms < 1 ms 1.18 23 < 1 ms 1.00 31 1.04 1.00 45

0.02 59.06 < 1 ms 1.14 10 < 1 ms 1.00 15 21.24 1.00 29

0.03 431.60 < 1 ms 1.04 9 < 1 ms 1.00 6 119.82 1.00 20

0.04 2275.64 < 1 ms 1.00 2 < 1 ms 1.00 5 273.82 1.00 19

0.05 10223.92 < 1 ms 1.00 3 < 1 ms 1.00 4 622.92 1.00 8

0.1 44268.36 < 1 ms 1.00 7 < 1 ms 1.00 2 3809.98 1.00 17

0.2 424.84 < 1 ms 1.00 15 < 1 ms 1.00 11 5302.22 1.00 33

0.3 < 1 ms < 1 ms 1.00 34 < 1 ms 1.00 46 1553.86 1.00 49

Table 3: Each entry of this table details, for each couple of heuristics, the number
of instances of Table 2 (there are 1600 instances) for which the line heuristic gives
a strictly better results than the column heuristic.

LCL Greedy Neigh.

LCL - 366 70

Greedy 426 - 86

Neigh 629 587 -

Table 4: This table details the results for the LCL algorithm and the greedy
alorithm. For each values of p and r, the algorithms are executed on 50 instances.
We give for each heuristic the mean running time in milliseconds and how many
times the returned density is strictly better than the density returned by the
other algorithm.

LCL Greedy

p r time (ms) dL > dG time (ms) dL < dG

200

0.01 < 1 ms 49 17.78 1

0.02 < 1 ms 48 22.58 2

0.03 < 1 ms 43 21.82 5

0.04 < 1 ms 31 19.26 18

0.05 < 1 ms 21 16.76 29

0.1 1.28 10 5.18 40

0.2 1.92 0 < 1 ms 0

0.3 2.58 0 < 1 ms 0

500

0.01 3.28 50 382.06 0

0.02 3.58 44 321.30 6

0.03 3.92 17 237.06 33

0.04 4.56 10 164.82 40

0.05 4.88 4 104.48 46

0.1 6.80 0 4.70 2

0.2 10.66 0 3.34 0

0.3 15.06 0 4.58 0

LCL Greedy

p r time (ms) dL > dG time (ms) dL < dG

1000

0.01 12.00 50 2832.52 0

0.02 14.04 21 1890.40 29

0.03 16.34 1 1099.38 49

0.04 17.72 1 553.90 49

0.05 18.74 5 233.70 45

0.1 24.72 0 7.82 0

0.2 41.50 0 12.62 0

0.3 59.18 0 18.36 0

2000

0.01 53.54 49 22068.00 1

0.02 59.96 0 10664.44 50

0.03 65.66 0 3914.08 50

0.04 71.68 6 1049.00 44

0.05 76.36 0 186.04 10

0.1 100.16 0 28.88 0

0.2 167.42 0 50.46 0

0.3 237.54 0 72.88 0

7 Conclusion

In this paper, we introduced the MaximumMatrix Contraction problem (MMC).
We proved this problem is NP-Complete. However, we also proved that every
algorithm which solves this problem is an O(

√
n)-approximation algorithm. Con-

sidering that the NP-Completeness was derived from the Maximum Clique prob-
lem, and that this problem cannot be polynomially approximated to within n

1

2
−ε,

MMC is very likely to not being approximable to within the same ratio. Such a
result would almost tight the approximability of MMC.

Moreover, we studied four algorithms to solve the problem, an integer lin-
ear program, a first-come-first-served algorithm and two greedy algorithms, and
gave numerical results. It appears firstly that integer linear programming is not
adapted to MMC while the three other heuristics returns really good quality so-
lutions in short amount of time even for large instances. Those results seems to
disconfirm the n

1

2
−ε inapproximability ratio. It would be interesting to deepen

the study in order to produce a constant-factor polynomial approximation algo-
rithm or a polynomial-time approximation scheme if such an algorithm exists.

References

1. Pillai, A., Chick, J., Johanning, L., Khorasanchi, M., de Laleu, V.: Offshore wind
farm electrical cable layout optimization. Engineering Optimization 47(12) (2015)
1689–1708

2. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations. Springer (1972) 85–103

3. H̊astad, J.: Clique is hard to approximate within nˆ(1-ǫ). Acta Mathematica 182(1)
(1999) 105–142

4. Watel, D., Poirion, P.: The Maximum Matrix Contraction problem : Appendix.
Technical Report CEDRIC-16-3645, CEDRIC laboratory, CNAM, France (2016)

5. Lubin, M., Dunning, I.: Computing in operations research using Julia. INFORMS
Journal on Computing 27(2) (2015) 238–248

	The Maximum Matrix Contraction problem

