Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK
Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler
University of Surrey, Guildford, UK
Jon M. Kleinberg
Cornell University, Ithaca, NY, USA
Friedemann Mattern
ETH Zurich, Zürich, Switzerland
John C. Mitchell
Stanford University, Stanford, CA, USA
Moni Naor
Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen
TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos
University of California, Los Angeles, CA, USA
Doug Tygar
University of California, Berkeley, CA, USA
Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Vladimir P. Gerdt • Wolfram Koepf
Werner M. Seiler • Evgenii V. Vorozhtsov (Eds.)

Computer Algebra in Scientific Computing

18th International Workshop, CASC 2016 Bucharest, Romania, September 19-23, 2016 Proceedings

Springer

Editors
Vladimir P. Gerdt
Laboratory of Information Technologies
Joint Institute of Nuclear Research
Dubna
Russia
Wolfram Koepf
Institut für Mathematik
Universität Kassel
Kassel
Germany

Werner M. Seiler
Institut für Mathematik
Universität Kassel
Kassel
Germany
Evgenii V. Vorozhtsov
Institute of Theoretical and Applied Mechanics
Russian Academy of Sciences
Novosibirsk
Russia

ISSN 0302-9743
ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-45640-9
ISBN 978-3-319-45641-6 (eBook)
DOI 10.1007/978-3-319-45641-6

Library of Congress Control Number: 2016949104
LNCS Sublibrary: SL1 - Theoretical Computer Science and General Issues
© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

One of the main goals of the International Workshops on Computer Algebra in Scientific Computing, which started in 1998 and since then have been held annually, is to highlight cutting-edge advances in all major disciplines of Computer Algebra (CA). And the second goal of the CASC workshops is to bring together both the researchers in theoretical computer algebra and the engineers as well as other allied professionals applying CA tools for solving problems in industry and in various branches of scientific computing.

This year the 18th CASC conference was held in Bucharest (Romania). Computer Algebra is popular among scientists in Romania. Researchers from many institutions, such as the University of Bucharest, the Institute of Mathematics "Simion Stoilow" of the Romanian Academy, the West University of Timişoara, the University "Al. I. Cuza" of Iaşi, the Institute of Computing "Tiberiu Popoviciu" from Cluj-Napoca, the "Horia Hulubei" National Institute for Research and Development in Physics and Nuclear Engineering (Bucharest-Măgurele), and "Ovidius" University in Constanța, are working on subjects such as numerical simulation using computer algebra systems, symbolic-numeric methods for polynomial equations and inequalities, algorithms and complexity in computer algebra, application of computer algebra to natural sciences and engineering, polynomial algebra, and real quantifier elimination. In Romania there are several international conferences on Computer Algebra and related topics such as the International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC, in Timişoara, or the series of conferences on commutative algebra and computer algebra held in Constanța and Bucharest.

The above has affected the choice of Bucharest as a venue for the CASC 2016 workshop.

This volume contains 30 full papers submitted to the workshop by the participants and accepted by the Program Committee after a thorough reviewing process with usually three independent referee reports. Additionally, the volume includes two invited talks.

Polynomial algebra, which is at the core of computer algebra, is represented by contributions devoted to improved algorithms for computing the Janet and Pommaret bases, the dynamic Gröbner bases computation, the algorithmic computation of polynomial amoebas, refinement of the bound of Lagrange for the positive roots of univariate polynomials, computation of characteristic polynomials of matrices whose entries are integer coefficient bivariate polynomials, finding the multiple eigenvalues of a matrix dependent on a parameter, the application of a novel concept of a resolving decomposition for the effective construction of free resolutions, enhancing the extended Hensel construction with the aid of a Gröbner basis, a hybrid symbolic-numeric method for computing a Puiseux series expansion for every space curve that is a solution of a polynomial system, numerical computation of border curves of bi-parametric real polynomial systems, and the application of sparse interpolation in Hensel lifting and
pruning algorithms for pretropisms of Newton polytopes. Polynomial algebra also plays a central role in contributions concerned with elimination algorithms for sparse matrices over finite fields, new algorithms for computing sparse representations of systems of parametric rational fractions, and quadric arrangement in classifying rigid motions of a 3D digital image.

Several papers are devoted to using computer algebra for the investigation of various mathematical and applied topics related to ordinary differential equations (ODEs): application of the Julia package Flows.jl for the analysis of split-step time integrators of nonlinear evolution equations, the use of the CAS Maple 18 for the derivation of operator splitting methods for the numerical solution of evolution equations, and the complexity analysis of operator matrices transformations as applied to systems of linear ODEs.

Three papers deal with applications of symbolic and symbolic-numeric computations for investigating and solving partial differential equations (PDEs) and ODEs in mathematical physics and fluid mechanics: the construction of a closed form solution to the kinematic part of the Cosserat partial differential equations describing the mechanical behavior of elastic rods, symbolic-numeric solution with Maple of a second-order system of ODEs arising in the problem of multichannel scattering, and symbolic-numeric optimization of the preconditioners in a numerical solver for incompressible Navier-Stokes equations.

Applications of CASs in mechanics and physics are represented by the following themes: qualitative analysis of the general integrable case of the problem of motion of a rigid body in a double force field, investigation of the influence of aerodynamic forces on satellite equilibria with the aid of the Gröbner basis method, and generation of irreducible representations of the point symmetry groups in the rotor + shape vibrational space of a nuclear collective model in the intrinsic frame.

The first invited talk by Th. Hahn focuses on the application of computer algebra in high-energy physics, in particular, the Mathematica packages FeynArts and FormCalc. The second invited talk by C.S. Calude and D. Thompson deals with the problems of incompleteness and undecidability. These are important problems related to the foundations of mathematics. The authors discuss some challenges proof-assistants face in handling undecidable problems. Several example problems, including the automated proofs, are presented. The authors briefly describe the computer program Isabelle, which they use as the proof assistant.

CASC 2016 features for the first time a full blown Topical Session. In this fairly new feature of the CASC series, up to six talks around a common theme are invited. The authors have an extended page limit, but their submissions are refereed according to the same principles and with the same rigour as normal submissions. This time the topic was Satisfiability Checking and Symbolic Computation $\left(S C^{2}\right)$ and the session also marks the beginning of a European FET-CSA project with the same title (see http:// www.sc-square.org for more information about this project and its objectives). There is a large thematic overlap between the fields of satisfiability checking (traditionally more a subject in computer science) and of symbolic computation (nowadays mainly studied by mathematicians). However, the corresponding communities are fairly disjoint and each has its own conference series. The central goal of the $S C^{2}$ project consists of bridging this gap and of bringing together people from both sides.

Thus, the 2016 Topical Session intends to familiarize the CASC participants with the many interesting problems in this domain. It was well organised by E. Abraham, J. Davenport, P. Fontaine, and Th. Sturm and comprises five talks. One is a one-hour survey talk by D. Monniaux on satisfiability modulo theory. The other four talks concern the investigation of the complexity of cylindrical algebraic decomposition with respect to polynomial degree, efficient simplification techniques for special real quantifier elimination, the description of a new SAT + CAS verifier for combinatorial conjectures, and a generalized branch-and-bound approach in SAT modulo nonlinear integer arithmetic.

The CASC 2016 workshop was hosted and supported by the University of Bucharest and the Romanian Mathematical Society. We appreciate that they provided free accommodation for a number of participants. The five speakers in the Topical Session received financial support from funds of the FET-CSA project Satisfiability Checking and Symbolic Computation.

Our particular thanks are due to the members of the CASC 2016 Local Organizing Committee at the University of Bucharest, Doru Ștefănescu, Luminița Dumitrică, Mihaela, Miruleț, and Silviu Vasile, who ably handled all the local arrangements in Bucharest. Furthermore, we would like to thank all the members of the Program Committee for their thorough work. We are grateful to Matthias Seiß (Kassel University) for his technical help in the preparation of the camera-ready manuscript for this volume. Finally, we are grateful to the CASC publicity chair Andreas Weber (Rheinische Friedrich-Wilhelms-Universität Bonn) and his assistant Hassan Errami for the design of the conference poster and the management of the conference web page http://www.casc.cs.uni-bonn.de.

July 2016
Vladimir P. Gerdt
Wolfram Koepf
Werner M. Seiler
Evgenij V. Vorozhtsov

Organization

CASC 2016 was organized jointly by the Institute of Mathematics at Kassel University, the University of Bucharest, and the Romanian Mathematical Society.

Workshop General Chairs

Vladimir P. Gerdt	Dubna
Werner M. Seiler	Kassel

Program Committee Chairs

Wolfram Koepf	Kassel
Evgenii V. Vorozhtsov	Novosibirsk

Program Committee

Moulay Barkatou	Limoges
François Boulier	Lille
Jin-San Cheng	Beijing
Victor F. Edneral	Moscow
Matthew England	Coventry
Jaime Gutierrez	Santander
Sergey A. Gutnik	Moscow
Jeremy Johnson	Philadelphia
Victor Levandovskyy	Aachen
Marc Moreno Maza	London, CAN
Veronika Pillwein	Linz
Alexander Prokopenya	Warsaw
Georg Regensburger	Linz
Eugenio Roanes-Lozano	Madrid
Valery Romanovski	Maribor
Doru Ştefănescu	Bucharest
Thomas Sturm	Nancy
Elias Tsigaridas	Paris
Jan Verschelde	Chicago
Stephen M. Watt	W. Ontario
Kazuhiro Yokoyama	Tokyo

Additional Reviewers

Alkis Akritas	Marc Mezzarobba
Carlos Beltrán	Bernard Mourrain
Nikolaj Bjorner	Hiroshi Murakami
Paola Boito	Clément Pernet
Charles Bouillaguet	Marko Petkovšek
Martin Bromberger	Gerhard Pfister
Changbo Chen	Clemens G. Raab
Pascal Fontaine	Anca Rădulescu
Vijay Ganesh	Marc Rybowicz
Andrzej Góźdź	Yosuke Sato
Gavin Harrison	Arne Storjohann
Vadim Isaev	Yao Sun
Hidenao Iwane	Stefan Takacs
Manuel Kauers	Thorsten Theobald
Kinji Kimura	Tristan Vaccon
François Lemaire	Bican Xia
Scott Mccallum	

Local Organization

Doru Ștefănescu
Luminiţa Dumitrică

Publicity Chair

Andreas Weber Bonn

Website

http://www.casc.cs.uni-bonn.de/2016
(Webmaster: Hassan Errami)

Contents

On the Differential and Full Algebraic Complexities of Operator Matrices Transformations 1
Sergei A. Abramov
Resolving Decompositions for Polynomial Modules 15
Mario Albert and Werner M. Seiler
Setup of Order Conditions for Splitting Methods. 30
Winfried Auzinger, Wolfgang Herfort, Harald Hofstätter, and Othmar Koch
Symbolic Manipulation of Flows of Nonlinear Evolution Equations, with Application in the Analysis of Split-Step Time Integrators 43
Winfried Auzinger, Harald Hofstätter, and Othmar Koch
Improved Computation of Involutive Bases 58
Bentolhoda Binaei, Amir Hashemi, and Werner M. Seiler
Computing All Space Curve Solutions of Polynomial Systems by Polyhedral Methods 73
Nathan Bliss and Jan Verschelde
Algorithmic Computation of Polynomial Amoebas 87
D.V. Bogdanov, A.A. Kytmanov, and T.M. Sadykov
Sparse Gaussian Elimination Modulo p: An Update. 101
Charles Bouillaguet and Claire Delaplace
МатнСнеск2: A SAT+CAS Verifier for Combinatorial Conjectures 117
Curtis Bright, Vijay Ganesh, Albert Heinle, Ilias Kotsireas, Saeed Nejati, and Krzysztof Czarnecki
Incompleteness, Undecidability and Automated Proofs (Invited Talk) 134
Cristian S. Calude and Declan Thompson
A Numerical Method for Computing Border Curves of Bi-parametric Real Polynomial Systems and Applications 156
Changbo Chen and Wenyuan Wu
The Complexity of Cylindrical Algebraic Decomposition with Respect to Polynomial Degree 172
Matthew England and James H. Davenport
Efficient Simplification Techniques for Special Real Quantifier Elimination with Applications to the Synthesis of Optimal Numerical Algorithms 193
Mădălina Eraşcu
Symbolic-Numeric Algorithms for Solving BVPs for a System of ODEs of the Second Order: Multichannel Scattering and Eigenvalue Problems. 212
A.A. Gusev, V.P. Gerdt, L.L. Hai, V.L. Derbov, S.I. Vinitsky,and O. Chuluunbaatar
Symbolic Algorithm for Generating Irreducible Rotational-Vibrational Bases of Point Groups 228
A.A. Gusev, V.P. Gerdt, S.I. Vinitsky, V.L. Derbov, A. Góźdź, A. Pȩdrak, A. Szulerecka, and A. Dobrowolski
A Symbolic Investigation of the Influence of Aerodynamic Forces on Satellite Equilibria 243
Sergey A. Gutnik and Vasily A. Sarychev
Computer Algebra in High-Energy Physics (Invited Talk). 255
Thomas Hahn
A Note on Dynamic Gröbner Bases Computation 276
Amir Hashemi and Delaram Talaashrafi
Qualitative Analysis of the Reyman - Semenov-Tian-Shansky Integrable Case of the Generalized Kowalewski Top 289
Valentin Irtegov and Tatiana Titorenko
On Multiple Eigenvalues of a Matrix Dependent on a Parameter 305
Elizabeth A. Kalinina
A Generalised Branch-and-Bound Approach and Its Application in SAT Modulo Nonlinear Integer Arithmetic 315
Gereon Kremer, Florian Corzilius, and Erika Ábrahám
Computing Characteristic Polynomials of Matrices of Structured Polynomials 336
Marshall Law and Michael Monagan
Computing Sparse Representations of Systems of Rational Fractions 349
François Lemaire and Alexandre Temperville
On the General Analytical Solution of the Kinematic Cosserat Equations 367
Dominik L. Michels, Dmitry A. Lyakhov, Vladimir P. Gerdt, Zahid Hossain, Ingmar H. Riedel-Kruse, and Andreas G. Weber
Using Sparse Interpolation in Hensel Lifting 381
Michael Monagan and Baris Tuncer
A Survey of Satisfiability Modulo Theory 401
David Monniaux
Quadric Arrangement in Classifying Rigid Motions of a 3D Digital Image. 426
Kacper Pluta, Guillaume Moroz, Yukiko Kenmochi, and Pascal Romon
A Lower Bound for Computing Lagrange's Real Root Bound 444
Swaroop N. Prabhakar and Vikram Sharma
Enhancing the Extended Hensel Construction by Using Gröbner Bases 457
Tateaki Sasaki and Daiju Inaba
Symbolic-Numerical Optimization and Realization of the Method of Collocations and Least Residuals for Solving the Navier-Stokes Equations. 473
Vasily P. Shapeev and Evgenii V. Vorozhtsov
Pruning Algorithms for Pretropisms of Newton Polytopes 489
Jeff Sommars and Jan Verschelde
Computational Aspects of a Bound of Lagrange 504
Doru Ştefănescu
Author Index 513

