
A Generalised Branch-and-Bound Approach
and its Application in

SAT Modulo Nonlinear Integer Arithmetic?

Gereon Kremer, Florian Corzilius, and Erika Ábrahám

RWTH Aachen University, Germany

Abstract. The branch-and-bound framework has already been success-
fully applied in SAT-modulo-theories (SMT) solvers to check the satisfia-
bility of linear integer arithmetic formulas. In this paper we study how
it can be used in SMT solvers for non-linear integer arithmetic on top
of two real-algebraic decision procedures: the virtual substitution and
the cylindrical algebraic decomposition methods. We implemented this
approach in our SMT solver SMT-RAT and compared it with the currently
best performing SMT solvers for this logic, which are mostly based on
bit-blasting. Furthermore, we implemented a combination of our approach
with bit-blasting that outperforms the state-of-the-art SMT solvers for
most instances.

1 Introduction

Satisfiability checking [7] aims to develop algorithms and tools to check the
satisfiability of existentially quantified logical formulas. Driven by the success
of SAT solving for propositional logic, fruitful initiatives were started to enrich
propositional SAT solving with solver modules for different theories. SAT-modulo-
theories (SMT) solvers [6] make use of an efficient SAT solver to check the
logical (Boolean) structure of formulas, and use different theory solver modules
for checking the consistency of theory constraint sets in the underlying theory.

Besides theories, such as equality logic, uninterpreted functions, bit-vectors
and arrays, SMT solvers also support arithmetic theories. Apart from interval
constraint propagation (ICP), SMT solving for quantifier-free linear real arith-
metic (QF LRA) often makes use of linear programming techniques such as the
simplex method [15]. For quantifier-free non-linear real arithmetic (QF NRA),
algebraic decision procedures, e.g. the virtual substitution (VS) method [28] or
the cylindrical algebraic decomposition method (CAD) [12] can be used.

There are several powerful SMT solvers, e.g., CVC4 [4], MathSAT5 [11], Sateen
[24], veriT [9], Yices2 [18] and Z3 [26] which offer solutions for quantifier-free
linear integer arithmetic (QF LIA) problems that mostly build on the ideas in

? The final authenticated version is available online at https://doi.org/10.1007/978-3-
319-45641-6 21.

[17]. Closely related to our work is the SMT-adaptation of the branch-and-bound
(BB) framework [27] in MathSAT5.

When moving from the real to the integer domain, non-linear arithmetic
becomes undecidable. Despite this fact, there are a few SMT solvers that support
the satisfiability check of quantifier-free non-linear integer arithmetic (QF NIA)
formulas, either for restricted domains (in which case the domain becomes finite
and the problem becomes decidable) or in an incomplete manner. Some of these
SMT solvers apply linearisation [8], whereas other tools, such as iSAT3 [19] and
raSAT [23], use interval constraint propagation adapted to the integer domain.
To the best of our knowledge, all other prominent solvers, such as AProVE [20],
CVC4 or Z3, apply mainly bit-blasting, which exploits SAT solvers by the use of
a binary encoding of bounded integer domains.

Although the satisfiability problem for QF NIA is undecidable, we see in
the employment and adaptation of algebraic decision procedures a promising
alternative to achieve incomplete but practically efficient satisfiability checking
solutions for QF NIA problems. Such solutions are urgently needed in several
research areas to open new possibilities and enable novel approaches. A typical
example is the field of program verification where, for instance, deductive proof
systems often generate QF NIA formulas as verification conditions (see e.g. [3]).
Just to mention a second example, for the termination analysis of programs often
QF NIA termination conditions need to be checked for satisfiability [8]. Currently,
non-linear integer arithmetic problems appearing in these areas are often solved
using, e.g., theorem proving, linearisation or bit-blasting.

Today’s SMT solvers neither exploit adaptations of algebraic QF NRA decision
procedures for finding QF NIA solutions1 nor use the BB framework to check
QF NIA formulas for satisfiability. In this paper we investigate these issues. The
main contributions of this paper are:

– We show on the example of the CAD method that some algebraic decision
procedures for QF NRA can be adapted to drive their search towards integer
solutions. Experimental results show that this approach works surprisingly
well on the satisfiable problem instances which we considered.

– We propose improvements for the general integration of BB in SMT solving.
– We show on the examples of the VS and the CAD methods, how algebraic

QF NRA decision procedures can be embedded into the BB framework to
solve QF NIA problems.

– Finally, we provide experimental results to illustrate how different decision
procedures can be strategically adapted, combined and embedded in the BB
framework to tackle the challenge of QF NIA satisfiability checking.

The rest of the paper is structured as follows. We start in Section 2 with
preliminaries on QF NIA, SMT solving, and the VS and the CAD methods. In

1 Z3 has a command-line option to solve, instead of QF NIA problems, their QF NRA
relaxations. This way Z3 can detect unsatisfiability (no real solution is found) or
sometimes even satisfiability (the found real solution happens to be integer), but
otherwise it returns “unknown”.

Section 3 we present a general framework for BB. Section 4 and 5 are devoted to
the integration of the VS and the CAD methods, respectively, into the BB frame-
work. After an experimental evaluation of the presented approach in Section 7,
we conclude the paper in Section 8.

2 Preliminaries

(Quantifier-free non-linear arithmetic) formulas ϕ are Boolean combinations
of constraints c which compare polynomials p to 0. A polynomial p can be a
constant, a variable x, or a sum, difference or product of polynomials:

p ::= 0 | 1 | x | (p+ p) | (p− p) | (p · p)
c ::= p = 0 | p < 0
ϕ ::= c | (¬ϕ) | (ϕ ∧ ϕ)

We use further operators such as disjunction ∨, implication ⇒ and comparisons
>, ≤, ≥, 6=, which are defined as syntactic sugar the standard way, and standard
syntactic simplifications (e.g., we omit parentheses based on the standard operator
binding order, write p1p2 instead of p1 · p2, −p instead of 0− p).

We use Z[x1, . . . , xn] to denote the set of all polynomials (with integer co-
efficients) over the variables x1, . . . , xn for some n ≥ 1. A polynomial p ∈
Z[x1, . . . , xn] is called univariate if n = 1, and multivariate otherwise. By Var(ϕ),
Pol(ϕ) and Con(ϕ) we refer to the set of all variables, polynomials and con-
straints occurring in the formula ϕ, respectively; especially, Pol(p ∼ 0) denotes
the polynomial p of a given constraint p ∼ 0 with ∼∈ {<,≤,=, 6=,≥, >}.

Each polynomial p ∈ Z[x1, . . . , xn] can be equivalently transformed to the
form akx

e1,k
1 . . . x

en,k
n + . . . + a1x

e1,1
1 . . . x

en,1
n + a0 with coefficients aj ∈ Z for

0 ≤ i ≤ n and exponents ei,j ∈ N0 for 1 ≤ i ≤ n and 1 ≤ j ≤ k. We call
mj := x

e1,j
1 . . . x

en,j
n a monomial, tj := ajmj a term, and a0 the constant part

of p. In the following, we assume that polynomials are in the above form with
pairwise different monomials; note that this form is unique up to the ordering of
the terms. By p1 ≡ p2 (ϕ1 ≡ ϕ2) we denote that the polynomials p1 and p2 (the
formulas ϕ1 and ϕ2) can be transformed to the same form. By deg(tj) :=

∑n
i=1 ei,j

we denote the degree of the term tj . By deg(p) := max1≤j≤k deg(tj) we denote
the degree of p and by deg(xi, p) := max1≤j≤k ei,j the degree of xi in p. A
polynomial p is linear, if deg(p) ≤ 1, and non-linear otherwise. A formula ϕ is
linear, if all polynomials p ∈ Pol(ϕ) are linear, and non-linear otherwise.

We use the standard semantics of arithmetic formulas. In the theory of
quantifier-free non-linear integer arithmetic (QF NIA), all variables xi are integer-
valued (the domain of xi, denoted by Dom(xi), is Z); in quantifier-free non-linear
real arithmetic (QF NRA) all variables xi are real-valued (Dom(xi) = R); in
the theory of non-linear mixed integer-real arithmetic (QF NIRA), variables can
have either domain. We denote by ϕZ (ϕR) that ϕ is interpreted as a QF NIA

(QF NRA) formula, and call ϕR the real relaxation of ϕZ.
As a preprocessing step for QF NIA formulas, we replace inequalities p 6= 0 by

p < 0 ∨ p > 0. Furthermore, based on the integrality of all variables, we simplify

< ≤ = ≥ >

a′
0 ∈ Z r + a′

0 + 1 ≤ 0 r + a′
0 ≤ 0 r + a′

0 = 0 r + a′
0 ≥ 0 r + a′

0 − 1 ≥ 0

a′
0 6∈ Z r + da′

0e ≤ 0 r + da′
0e ≤ 0 false r + ba′

0c ≥ 0 r + ba′
0c ≥ 0

Table 1: Simplification of a QF NIA constraint (
∑k
i=1 aimi) + a0 ∼ 0, where g is

the greatest common divisor of a1, . . . , ak, a′0 := a0
g and r :=

∑k
i=1

ai
g mi

constraints in the formula according to Table 1. After these simplifications, only
the relations =, ≥ and ≤ (but no <, > nor 6=) appear in the formulas.

The substitution of a variable x by a value v ∈ Dom(x) in a formula ϕ
is denoted by ϕ[v/x]. A value (v1, . . . , vn) ∈ Rn is a real root or zero of a
polynomial p ∈ Z[x1, . . . , xn] if p(v1, . . . , vn) := p[v1/x1] . . . [vn/xn] ≡ 0. A value
(v1, . . . , vn) ∈ Rn is a solution of a formula ϕ with Var(ϕ) = {x1, . . . , xn} if
ϕ(v1, . . . , vn) := ϕ[v1/x1] . . . [vn/xn] ≡ true.

The satisfiability checking problem is the problem to decide whether there
exists a solution for a given formula ϕ. Note that checking the satisfiability of a
quantifier-free formula ϕ with Var(ϕ) = {x1, . . . , xn} and checking the validity
of the existentially quantified formula ∃x1. . . .∃xn.ϕ define the same problem.

2.1 SAT-modulo-theories solving

For the satisfiability check of logical formulas over some theories, SAT-modulo-
theories (SMT) solvers combine a SAT solver with one or more theory solvers. The
SAT solver is used for the efficient exploration of the logical structure of the input
formula, whereas the theory solver(s), implementing some decision procedures for
the underlying theory, are used to check the consistency of sets (conjunctions) of
certain theory constraints. The SMT-solving framework is illustrated in Figure 1.

Boolean abstraction

SAT solver

Theory
solver(s)

constraints

(sat+model) or
(unsat+explanation) or

(unknown)

input
CNF formula

SAT/UNSAT

Fig. 1: The SMT solving framework

In this work we consider a less-
lazy SMT-solving approach based on
DPLL [16] SAT solving. The input for-
mula is brought to negation normal
form, negation is applied to atomic
constraints, and finally conjunctive
normal form (CNF) is built (using
Tseitin’s transformation), resulting in
a conjunction of disjunctions of atomic
(not negated) constraints. The SAT
solver tries to find a satisfying solu-
tion for the Boolean skeleton of the
input formula, which is the proposi-

tional logic formula obtained by replacing each constraint c by a fresh proposition
hc. In other words, the SAT solver tries to determine a set of constraints such
that the input formula is satisfiable if the determined constraints have a common

solution. During its search, the SAT solver works “less lazily”, i.e., it asks the
theory solver(s) regularly whether the set of those constraints, whose abstraction
variables are true in the current partial assignment, are together consistent. Note
that we do not need to pass the negation of constraints with false abstraction
variables to the theory solver, because all abstraction variables appear in the
transformed formula without negation. Therefore, all clauses are still satisfiable
even if we wrongfully assign a variable to false.

The DPLL algorithm, used in most state-of-the-art SAT solvers, executes
the following loop: It repeatedly makes a decision, assuming a certain value for
some proposition. Then it applies Boolean constraint propagation (BCP), thereby
identifying variable assignments that are implied by the last decision. If the
propagation succeeds without conflicts, a new decision is made. However, the
propagation might also lead to a conflict, which means that the current partial
assignment cannot be extended to a full satisfying solution. In the latter case
conflict resolution is applied to determine which decisions led to the conflict.
After backtracking, i.e., undoing some of the previous decisions, the SAT solver
learns a new clause to exclude the found conflict (and other similar ones) from
the future search and continues the search in other parts of the search space.

In the less-lazy SMT-solving context, theory solvers need to be able to work
incrementally, i.e., to extend a previously received set of constraints with new
constraints and to check the extended set for consistency while reusing collected
information from the last check in order to improve the performance; similarly,
they need to be able to backtrack, i.e., to remove constraints from their current
constraint sets. Furthermore, to enable the SAT solver to resolve theory-rooted
conflicts, the theory solver has to return an explanation if it detects inconsistency,
usually in form of an inconsistent subset of its received constraints.

We use our SMT-solving toolbox SMT-RAT [14] to implement the approaches
described in this work, and to compare the results to other approaches. SMT-RAT
provides a rich set of SMT-compliant implementations of QF NRA/ QF NIA

procedures. These procedures are encapsulated in modules, which are executed
by our SMT solver according to a user-defined strategy. In this work, we will use
only sequential strategies, where a preprocessing module, a SAT solver module,
and one or more theory solver modules are arranged sequentially. The SAT solver
sends theory constraints in an incremental fashion to the first theory solver
module, which tries to determine whether its received constraints have a common
satisfying solution. The first theory solver might also pass on sub-problems2 to
be checked for satisfiability to the next theory solver module and so on. Each
theory solver module returns to its caller module (i) either satisfiability along
with a model if requested, (ii) or unsatisfiability and an explanation in form of
an infeasible subset of its received formulas, (iii) or unknown. Besides modules
for parsing the input problem and transforming it to conjunctive normal form
as requested by SAT solving, we use a MiniSat-based SAT solver module and

2 These sub-problems are not necessarily constraints or conjunctions of constraints,
but in general formulas with arbitrary Boolean structure.

theory solver modules implementing the simplex, the VS and the CAD methods,
and a theory solver module for bit-blasting.

2.2 Virtual substitution

The virtual substitution (VS) method [28] is an incomplete decision procedure
for non-linear real arithmetic. As we aim at satisfiability checking, we restrict
ourselves to the quantifier-free fragment QF NRA (where we understand all free
variables as existentially quantified). Given a QF NRA formula ϕR in variables
Var(ϕR) = {x1, . . . , xn}, the VS iteratively eliminates variables that appear at
most quadratic in ϕR. Assume w.l.o.g. that we want to eliminate a variable xn,
such that deg(xn, p) ≤ 2 for all p ∈ Pol(ϕR).

In the univariate case, i.e. Pol(ϕR) ⊆ Z[xn], we can use the solution equation
for quadratic polynomials to determine the real roots of all p ∈ Pol(ϕR). They
separate regions in which each p ∈ Pol(ϕR) is sign-invariant. We determine for
each of those sign-invariant regions a representative element, which we collect in
the set of test candidates T (xn, ϕR). Due to the sign-invariance of those regions,
ϕR is satisfiable if and only if one of the test candidates satisfies the formula.

Even if the formula contains multivariate polynomials, we can apply the solu-
tion equation to determine real roots ti and the side conditions SC(ti) for their
existence (radicand non-negative, denominator is not zero), if we interpret multi-
variate polynomials p ∈ Z[x1, . . . , xn] as univariate polynomials with polynomial
coefficients p ∈ Z[x1, . . . , xn−1][xn]. However, now the results are parametric in
x1, . . . , xn−1, therefore we know neither the existence nor the order of the roots;

ϕn
R

. . .

t1xn
. . .

ϕn−1
R := ϕn

R [t
in
xn
//xn] ∧ SC(tinxn

)

ϕ1
R := ϕ2

R[t
i2
x2
//x2] ∧ SC(ti2x2

)

. . .

t1x1
. . .

true

ti1x1
. . .

. . .

tk1
x1

..

tinxn
. . .

. . .

tkn
xn

T (xn, ϕ
n
R) :

T (x1, ϕ
1
R) :

Fig. 2: Possible VS depth-first search

here, the VS uses −∞ as a test
candidate from the left-most sign-
invariant region, and infinitesimals ε
in order to represent with t+ ε the
sign-invariant region on the right of t.
As the test candidates might contain
fractions, radicals, −∞ and ε, stan-
dard substitution [ti/xn] can lead
to improper expressions which are
not arithmetic formulas. Instead we
use the virtual substitution [ti//xn]
which resolves these improper expres-
sions with special rules [28] result-
ing in a QF NRA formula ϕR[ti//xn]
that is satisfiability-equivalent to
ϕR[ti/xn].

In summary, the VS specifies a finite set T (xn, ϕR) of (symbolic) test candidates
(TCs) for xn in ϕR, and for each TC t ∈ T (xn, ϕR) some side conditions SC(t),
such that

ϕR is satisfiable ⇔
∨

t∈T (xn,ϕR)
(ϕR[t//xn] ∧ SC(t)) is satisfiable . (1)

x1

x2

(a) Plot of the solution space and
the sample points

P2:{x2
1−2x2, x1−3x2+3/2}

P1:{3x2
1−2x1−3} }3/2ξ2,1,

}15/6,2/3,1/2,0,S2(1):{

ξ1,−1,S1:{

(b) Schematic overview of the CAD method

Fig. 3: CAD example for c1 : x21 − 2x2 ≤ 0 and c2 : x1 − 3x2 + 3/2 ≥ 0

In [13] we presented an implementation of the VS for satisfiability checking,
which executes a depth-first search for a true leaf as illustrated in Figure 2; a
solution can be read off the solution path from the root to the true leaf.

2.3 Cylindrical algebraic decomposition

The cylindrical algebraic decomposition (CAD) [1,2,12] is a complete decision
procedure for non-linear real arithmetic, which we will use in the SMT solving
context for checking the satisfiability of QF NRA formulas. Due to space restriction,
we give only a high-level description here.

Given a formula ϕR in variables x1, . . . , xn, the CAD method partitions Rn
into a finite number of disjoint n-dimensional cells. Each of them is a connected
semi-algebraic set over which all polynomials in Pol(ϕR) are sign-invariant and
thus either all or none of the points in a cell satisfy ϕR. The cells are constructed
to be cylindrical : the projections of any two n-dimensional cells onto the k-
dimensional space (1 ≤ k < n) are either identical or disjoint. The n-dimensional
cells with identical k-dimensional projections S form cylinders S × Rn−k.

The CAD method uses a two-phase approach to compute such a partitioning.
In the projection phase, a projection operator is applied to the input set Pn =
Pol(ϕR) of n-dimensional polynomials with respect to the variable xn, yielding
a set Pn−1 ⊂ Z[x1, . . . , xn−1] of (n−1)-dimensional polynomials, whose real
roots constitute the boundaries of the (n−1)-dimensional projections of the
n-dimensional CAD cells. The projection operator is applied recursively until
a set P1 ⊂ Z[x1] of univariate polynomials is obtained. Note that this imposes
a fixed variable ordering that cannot easily be changed without recomputing
the projection. Much work has been done on providing efficient methods for
computing preferably small projections, for example in [10,22,25].

In the second phase called lifting or construction, the CAD method constructs
a sample point for each of the cells. It first isolates the real roots ξ1, . . . , ξk of the
polynomials in P1 which constitute the boundaries of the 1-dimensional projec-
tions of the cells which are the intervals I={(−∞, ξ1), [ξ1, ξ1], (ξ1, ξ2), . . ., (ξk,∞)}.
We choose a sample point from each of these intervals Ii, resulting in a sample set
S1 = {s1, . . . , s2k+1}. Each sample point s ∈ S1 from some interval Ii is now lifted

using the polynomials from P2: each polynomial from P2 is partially evaluated
on s which results in a set of univariate polynomials whose real roots {ξs1, . . . ξsls}
are again isolated. For each real root {ξs1, . . . ξsls} there exists a surface Ii× ξsj and
together these surfaces separate the cylinder Ii ×R into 2 · ls + 1 individual cells.
Assuming that ξs1 < . . . < ξsls , these cells are the surfaces Ii×ξsj (for j = 1, . . . , ls),
the regions between two surfaces Ii × (ξsj , ξ

s
j+1) (for j = 1, . . . , ls − 1), and the

regions below and above all separating surfaces Ii × (−∞, ξs1) and Ii × (ξsls ,∞).
We can again take sample points from these cells and repeat the lifting procedure
until we obtain n-dimensional sample points that are representatives for the
n-dimensional cells that are sign-invariant with respect to the polynomials in Pn.
We evaluate ϕR for each n-dimensional sample point to check whether one of
them satisfies the formula, in which case we obtain a satisfying solution, otherwise
the formula is not satisfiable.

The CAD method is illustrated on a 2-dimensional example in Figure 3. Fig-
ure 3a depicts the solution space, while Figure 3b visualises the CAD computation.
The sample point (1, 2/3) satisfies the formula x21 − 2x ≤ 0 ∧ x1 − 3x2 + 3/2 ≥ 0.
Note that we can choose a sample point from intervals between real roots. This
choice is important when searching for integer solutions: while there is no integer
solution for the sample point 1 from the interval (ξ1, ξ2), selecting 0 instead of 1
would have resulted in the integer solution (0, 0).

3 A General Branch-and-Bound Framework

A popular approach to check QF LIA formulas ϕZ for satisfiability is the branch-
and-bound (BB) framework [27]. It first considers the relaxed problem ϕR in the
real domain. If the relaxed problem is unsatisfiable then the integer problem
is unsatisfiable, too. Otherwise, if there exists a real solution then it is either
integer-valued, in which case ϕZ is satisfiable, or it contains a non-integer value
r ∈ R \ Z for an integer-valued variable x. In the latter case a branching takes
place: BB reduces the relaxed solution space by excluding all values between
brc = max{r′ ∈ Z | r′ ≤ r} and dre = min{r′ ∈ Z | r′ ≥ r} in the x-dimension,
described by the formula ϕ′ = ϕ∧ (x ≤ brc ∨ x ≥ dre). This procedure is applied
iteratively, i.e., BB will now search for real-valued solutions for ϕ′. BB terminates
if either an integer solution is found or the relaxation is unsatisfiable. Note that
BB is in general incomplete even for the decidable logic QF LIA.

The most well-known application combines BB with the simplex method. As
branching introduces disjunctions and thus in general non-convexity, branching is
implemented by case splitting: in one search branch we assume x ≤ brc, and in a
second search branch we assume x ≥ dre. Depending on the heuristics, the search
can be depth-first (full check of one of the branches, before the other branch is
considered), breadth-first (check real relaxations in all current open branches
before further branching is applied), or it can follow a more sophisticated strategy.

The combination of BB with the simplex method was also explored in the
SMT-solving context [17]. The advantage in this setting is that we have more
possibilities to design the branching.

– We can integrate a theory solver module based on the simplex method as
described above, implementing BB internally in the theory solver by case
splitting. It comes with the advantage that case splitting is always local to
the current problem of the theory solver and does not affect later problems,
and with the disadvantage that we cannot exploit the advantages of learning,
i.e., to remember reasons of unsatisfiability in certain branches and use this
information to speed up the search in other branches.

– Alternatively, given a non-integer solution r for a variable x found by the
theory solver on a relaxed problem, we can lift the branching to the SAT
solver by extending the current formula with a new clause (x ≤ brc∨x ≥ dre)
[5]. The newly added clause must be satisfied in order to satisfy the extended
formula. Therefore, the SAT solver assigns (the Boolean abstraction variable
of) either x ≤ brc or x ≥ dre to true, i.e., the branching takes place. On the
positive side, lifting branching information and branching decisions to the
SAT solver allows us to learn from information collected in one branch, and
to use this learnt information to speed up the search in other branches. On
the negative side, the branching is not local anymore as it is remembered in a
learnt clause. Therefore, it might cause unwanted splittings in later searches.

To unify advantages, MathSAT5 [21] implements a combined approach with
theory-internal splitting up to a given depth and splitting at the logical level
beyond this threshold.

Following the BB approach in combination with the simplex method, we
can transfer the idea also to non-linear integer arithmetic: We can use QF NRA

decision procedures to find solutions for the relaxed problem and branch at non-
integer solutions of integer-valued variables. However, there are some important
differences. Most notably, the computational effort for checking the satisfiability
of non-linear real-arithmetic problems is much higher than in the linear case. If
we have found a real-valued solution and apply branching to find integer solutions,
the branching will refine the search in the VS and CAD methods: it will create
additional test candidates for the VS and new sample points for the CAD method,
which will serve as roots for new sub-trees in the search tree. However, the search
trees in both branches have a lot in common, that means, a lot of the same work
has to be done for both sides of the branches. To prevent the solvers from doing
much unnecessary work, we has to carefully design the BB procedure.

– Branching has to be lifted to the SAT solver level to enable learning, both in
the form of branching lemmas as well as explanations for unsatisfiability in
different branches.

– Learning explanations will allow us to speed up the search by transferring
useful information between different branches. However, we need to handle
branching lemmas thoughtfully and assure that learnt branching lemmas will
not lead to branching for all future sub-problems, but only for “similar” ones
where the branching will probably be useful.

– As branching refines the search, it has to work in an incremental fashion
without resetting solver states.

Algorithm 1 Extended SAT solving algorithm for BB in SMT

extended SAT algorithm()
begin
1 : while true do
2 : if BCP returns no conflict then
3 : send newly assigned theory constraints to theory solver
4 : check theory consistency
5 : if theory solver returned unsat then
6 : learn theory conflict
7 : end if
8 : end if
9 : if Boolean or theory conflict occurred then

10 : try to resolve conflict
11 : if conflict can be resolved then
12 : backtrack in SAT and theory solving
13 : else
14 : if Line 26 was visited then return unknown

15 : else return unsat

16 : end if
17 : else
18 : if theory solver returned urgent branching lemmas then
19 : learn them and branch
20 : else if not all propositional variables are assigned then
21 : assign a value to an unassigned propositional variable
22 : else if theory solver returned unknown then
23 : if theory solver returned final branching lemmas then
24 : learn them and branch
25 : else
26 : exclude current Boolean assignment from further search
27 : end if
28 : else return sat // theory solver returned sat

29 : end if
30 : end while
end

– If possible, the search strategies of the underlying QF NRA decision procedures
have to be tuned to prefer integer solutions (and if they can choose between
different integer values, they must choose the most “promising” one).

– Last but not least, as the performance of solving QF NRA formulas for
satisfiability highly improves if different theory solvers implementing differ-
ent decision procedures are used in combination, a practically relevant BB
approach for QF NIA should support this option.

3.1 Processing branching lemmas in DPLL(T) SAT solving

As mentioned before, an SMT solver combines a SAT solver and one or more
theory solver modules. First we discuss our general approach of adapting these
modules to implement BB for non-linear arithmetic, as described in Algorithm 1.

If we remove the Lines 14, 18-19, 22-27 from Algorithm 1 (printed in italic
font) then we achieve the standard SMT framework without BB embedding. This
basic algorithm first applies Boolean constraint propagation (BCP, Line 2) to
detect implications of current decisions. If BCP does not lead to a conflict, the
consistency in the theory domain is checked (Lines 3-4). If the theory constraints,
which have to hold according to the current Boolean assignment, are inconsistent
(Line 5) then the theory solver provides an explanation (an infeasible subset of its
input constraints). We negate this explanation (resulting in a tautology) and add
its Boolean abstraction as a new clause to the clause set to exclude this theory
conflict from future search (Line 6); If either the BCP led to a Boolean conflict or
a theory conflict occurred, then the solver tries to resolve the conflict (Line 10).
If the conflict can be resolved (Line 11), then backtracking removes some of
the decisions that led to the conflict; note that also the corresponding theory
constraints will be removed from the input constraint list of the underlying theory
solver (Line 12). As a result of a successful conflict resolution, a new clause will
be learnt that will cause new implications in the next BCP iteration. Otherwise,
if the conflict cannot be resolved, the input formula is unsatisfiable (Line 15).

Otherwise, if no conflict occurred, either all variables are assigned, in which
case we have found a full solution (Line 28), or we choose one unassigned variable
to which we assign a certain value (Lines 20-21) and propagate this when executing
the next iteration of the main loop.

We modify this algorithm as follows. Firstly, additionally to sat and unsat,
we allow theory solvers to return unknown. We do so because it is possible that
the underlying theory solving procedure cannot determine the consistency of
the set of constraints at hand. For instance, since QF NIA is undecidable, a
theory solver for QF NIA can only be incomplete. This means either that the
theory solver has non-terminating cases (which none of our theory solvers do),
or that the theory solver relaxes each problem to a version that is decidable
(e.g. QF NRA). The latter case is only possible if we allow inconclusive answers,
in which case the theory solver will return unknown. If the Boolean assignment
is partial and the theory solver returns unknown, the SAT solver continues its
search. If a full satisfying Boolean assignment was found by the SAT solver, but
the theory solver cannot determine whether the solution is consistent in the
(integer) theory, then the SAT solver excludes the current Boolean assignment
from further search (by learning a clause in Line 26) and continues its search; if
the following search detects a satisfying solution then the SMT solver returns
sat, otherwise it returns unknown (Line 14).

Additionally to returning unknown, a theory solver can also return a so-called
lemma that explains the inconclusive answer in more detail and that helps the
SMT solver in finding a conclusive answer. This can happen for example if the
theory solver has found a solution for the real relaxation of its input problem
ϕ, but it is not integer-valued. In this case, the theory solver might return a
branching lemma of the form

(c1 ∧ . . . ∧ ck)⇒ (x ≤ brc ∨ x ≥ dre) , (2)

demanding to split the domain of the integer-valued variable x at the non-integer
value r ∈ R \Z, under the condition that the branching premise c1 ∧ . . .∧ ck with
{c1, . . ., ck} ⊆ Con(ϕ) holds. Additionally, the theory solver can specify which
of the two branches it prefers to start with. We call the Boolean abstraction
(¬hc1 ∨ . . .∨¬hck ∨hx≤brc∨hx≥dre) of the branching lemma in Eq. 2 a branching
clause and its last two (possibly fresh) literals branching literals.

Branching lemmas can be either urgent or final3. Urgent branching lemmas
are immediately abstracted, added to the SAT solver’s clause set and used for
branching (Lines 18-19). Final branching lemmas are relevant only if the SAT
solver has a full satisfying Boolean assignment (Lines 23-24). When a branching
clause is added, one of its branching literals (the one that was not preferred
by the theory solver) will be assigned false (thus, if the branching premise
is true, BCP will assign true to the preferred branching literal; this way we
prevent that both branching literals become true, what would result in a theory
conflict). Afterwards, we handle the branching clause just as any learnt clause
and benefit from the usual reasoning and learning4 process, which yields the best
performance according to our experience.

To prevent unnecessary branchings, we assign always the value false to
branching literals as decision variables in Line 29. Remember that only constraints
with true abstraction variables will be passed to the theory solver. I.e., only
branching clauses whose premise is true play a role in the theory, and for those
clauses only one of the branching literals.

4 Branch-and-Bound with Virtual Substitution

In this section we present how the VS method as introduced in Section 2.2 can
be embedded into the BB framework to check the satisfiability of a given QF NIA

formula ϕnZ over (theory) variables x1, . . . , xn. First we apply VS on the real
relaxation ϕnR of ϕnZ. If we determine unsatisfiability, we know that ϕnZ is also
unsatisfiable. Otherwise, if we have found a solution S with the VS for ϕnR, as
illustrated in Figure 2, then S maps the variables Var(ϕnR) = {x1, . . . , xn} to

TCs S(xj) = t
ij
xj (1 ≤ j ≤ n). For QF NIA formulas we can omit to consider

strict inequalities as described in Table 1. This saves us from considering TCs
with infinitesimals as introduced in [28] and the comparably higher complexity

they entail. Therefore, S(xj) is either −∞ or of the form
qj,1+qj,2

√
qj,3

qj,4
with

qj,1, . . . , qj,4 ∈ Z[x1, . . . , xj−1] (roots parametrised in some polynomials).
If a solution S for the relaxation ϕnR is found then there is a true leaf in the

search tree, as illustrated in Figure 2. We now try to construct an integer solution
S∗ from the parametrised solution S, as illustrated in Figure 4, traversing the
solution path from the true leaf backwards. If the TC ti1x1

for x1 is not −∞,
it does not contain any variables, thus we can determine whether its value is

3 In the experimental results we use final lemmas only.
4 Note that modern SAT solvers also allow to forget learnt clauses that did not

contribute to conflicts recently. This applies also to branching clauses.

true ti1x1

∈ Z
ϕ1

R ti2x2

∈ Z
t
ij
xj

6∈ Z
ϕj

R
. . . tinxn

ϕn
R

[ti1x1
/x1] [ti2x2

/x2]

. . .

. . .

Fig. 4: Solution path from Figure 2 traversed backwards from the leaf to the root

integer and set S∗(x1) to this value. If ti1x1
= −∞, we can take any integer

which is strictly smaller than all the other TCs in T (x1, ϕ
1
R). Now we iterate

backwards: for each test candidate t
ij
xj on the solution path, which is not −∞, we

substitute the values S∗(x1), . . . , S∗(xj−1) for the variables x1, . . . , xj−1, resulting
in S∗(xj) := S(xj)[S

∗(x1)/x1] . . . [S∗(xj−1)/xj−1], which again does not contain

any variables and we can evaluate whether its value is integer. If t
ij
xj = −∞ then

we evaluate all test candidates from T (xj , ϕ
j
R) whose side conditions hold by

substituting S∗(x1), . . . , S∗(xj−1) for x1, . . . , xj−1 in the TC expressions, and we
set S∗(xj) to an integer value that is strictly smaller than all those TC values. We
repeat this procedure until either a full integer solution is found or the resulting
value is not integer in one dimension.

If all TC values are integer then VS returns sat. Otherwise, if we deter-
mine that S∗(xj) for some j is not integer-valued, then there is some z ∈ Z
such that S∗(xj) ∈ (z − 1, z). In this case we return the branching lemma
(
∧
ψ∈Origxj

(S(xj))
ψ)⇒ (xj ≤ z − 1 ∨ xj ≥ z), where Origxj

(S(xj)) denotes the

VS module’s received constraints being responsible for the creation of the TC
S(xj). We can determine this set recursively with Origxj

(S(xj)) := Origxj
(c) if

we used constraint c ∈ Con(ϕjR) for generating the TC S(xj), and where

Origxj
(c) :=


c , if j = n
Origxj+1

(c) , if xj 6∈ Var(c)

Origxj+1
(S(xj+1)) ∪Origxj+1

(c′) , if c′ ∈ Con(ϕj+1
R) such that

c ∈ Con(c′[S(xj+1)//xj+1])
Origxj+1

(S(xj+1)) , otherwise.

Note that the last case occurs if the given constraint is introduced through a
TC’s side condition.

Basically, if we have found a non-integer valued TC S∗(xj) /∈ Z, we can still
continue the procedure to determine all other non-integer-valued TCs, but the
gain (enabling a heuristics to select on which variable value we want to branch)
comes at high computational costs, as we need to compute with nested fractions
and square roots. Therefore, we do not consider other heuristics but branch
always on the first detected non-integer value. In contrast, as we will see in the
next section, the CAD methods offers more freedom to design other heuristics.

This procedure is sound, as we do not prune any integer solutions. It is not
complete, as it might branch infinitely often for the same variable at an always

increasing or always decreasing value. This procedure can also be used to check
a QF NIRA formula for satisfiability, if we eliminate real-valued variables first.

5 Branch-and-Bound with the CAD Method

Also the CAD method can be embedded into the BB approach the usual way,
however, it offers more flexibility to tune its search towards integer solutions.

Sample point selection. The computation time of the lifting phase heavily depends
on the representation size of the numbers involved. The representation of an
integer is inherently smaller than that of a fractional number of a similar value
due to the lack of a denominator and a smaller numerator. Therefore, when
selecting a sample point from a given interval, we always choose an integer value
whenever one exists. As a side effect, this is not only faster due to the smaller
representation but also generates integer solutions automatically which generally
helps to avoid unnecessary branches.

When several integer values are available in a given interval as possible sample
points, some of them might lead to a full integer solution whereas some others
not. Unfortunately, there is no generally valid rule to determine more “promising”
samples. In our implementation we choose integer samples around the interval
middle.

Note that we could even stop lifting for the given partial sample if a complete
integer extension of the current sample becomes impossible during the lifting.
However, if at an earlier level we had the choice between different integer values
for a cell sample then we cannot conclude unsatisfiability in the current sub-tree.
Therefore, even if we cannot choose integer samples, in the current implementation
we continue lifting and search for a satisfying real extension of the partial integer
sample. If the search leads to a (non-integer) solution, we request branching at
the SAT level. Otherwise, if the current branch is unsatisfiable in the real domain,
we continue the search in other parts of the search space.

Example 1. Consider P2 = {x22 + x1 = 0, x1 < −1}. Projecting x2 yields P1 =
{x1, x1 + 1} with real roots {−1, 0}. To satisfy x1 < −1, we only need to choose
a sample for x1 from (−∞,−1). Assume we choose −2. Lifting −2 yields the
polynomials {x22− 2,−1} with real roots {−

√
2,
√

2}, both being non-integer. All
other cells around these roots violate the sign condition. However, we cannot
infer unsatisfiability in the integer domain: selecting −4 instead of −2 would
have produced the polynomials {x22 + 4,−3} with integer roots {−2, 2}.

Remark 1. We would like to mention an idea, which is not yet implemented
but might lead to further improvements. Assume as above an integer sample
s = (s1, . . ., sj) ∈ Zj for which lifting yields no integer extension. Assume now
additionally that in each dimension i = 1, . . ., j the sample si is the only integer
point in the respective interval; we say that s is unique. In this special case the
current sub-tree cannot contain any integer solutions; we can safely stop lifting
for s and continue in other parts of the search space.

If we find a solution elsewhere, we can return sat. However, if the input formula
has no integer solution, CAD needs to return an explanation for unsatisfiability.
In the real domain, we generate such an explanation by specifying for each
full-dimensional sample s (i.e., for each leaf in the lifting tree) the set Es of all
original constraints that are violated by the leaf, and computing a possibly small
covering set E which contains at least one constraint from each leaf’s set Es.

Now, if we do not complete the lifting for some sub-trees because we de-
termined unsatisfiability at an earlier level, we cannot use the same approach
to generate explanations. Instead, we can proceed as follows: Remember that
s = (s1, . . ., sj) ∈ Zj is the sample for which lifting was stopped because s
is unique and it has no integer extension. Each si samples an interval, whose
endpoints are zeros of some polynomials from Pi at (s1, . . ., si−1); let P si ⊆ Pi be
the set of those polynomials for i = 1, . . ., j and let P si = ∅ for i = j + 1, . . ., n.
Now we follow back the projection tree, and for i = 1, . . ., n− 1 we iteratively
add to P si+1 all “projection parents”5 of all polynomials in P si , i.e., all those
polynomials that were used in the projection to generate P si . As a result we
achieve a set P sn ⊆ Pn of original constraints, which serve as an explanation
for the unsatisfiability of the sub-tree rooted at s. We compute this set P sn for
each unique non-completed sample, build their union, and further extend it with
additional constraints from Pn to cover all sets Es′ of full-dimensional sample
leafs s′. The resulting set is an infeasible subset of the input constraint set.

Remark 2. As the selection of sample points might be crucial for discovering
integer solutions, we also experimented with choosing (if possible) multiple sample
points for an interval instead of a single one. However, the overhead due to these
redundant sample points greatly outweighs any gain, even if only two samples
for a single interval are chosen. This is because the redundancy increases with
every dimension and often leads to an additional exponential growth.

Sample point lifting order. The order in which sample points are lifted is crucial
for fast solution finding. As we want to find integer solutions, we first lift integer
sample points before considering non-integer ones. Furthermore, if we already
have a partial lifting tree due to a previous incremental call to the CAD method,
for further lifting we choose partial integer sample points of high dimension first.

Constructing branching lemmas. If CAD finds a solution s = (s1, . . . , sn) ∈ Rn\Zn,
it returns unknown and requests branching at the SAT level. We have tried three
alternative strategies to generate branching lemmas. The first strategy branches
on the value of xi with i = min{i = 1, . . ., n | si 6∈ Z}. The second strategy is
similar but takes the highest index. In both cases, the branching premise is the
set of all received constraints; in the future we will also experiment with the set
P sn (see Remark 1).

The third strategy makes use of the sampling heuristics of the CAD that
strongly prefers integers. That means that the longest integer prefix (s1, . . . , sj) ∈
5 A projected polynomial can have several “parents”; in this case we can choose

any of them. In practice, one could store the chronologically “oldest” parents, as
backtracking removes input polynomials in chronologically reverse order.

Zj of s cannot be further extended with an integer sample component. This
strategy generates the branching lemma6

C →
(∨j

i=1
xi ≤ si − 1 ∨ xi ≥ si + 1

)
. (3)

Currently, the branching premise C is again the set of all received constraints. In
the future we will also investigate collecting all constraints that reject integer
sample points in the vicinity of the first non-integer component sj+1. Let sj+1↓
(sj+1↑) be s where sj+1 is replaced by bsj+1c (dsj+1e). We define the branching
premise by {c ∈ C | c(sj+1↓) ≡ false ∨ c(sj+1↑) ≡ false}.

6 Combination of Procedures

We can often improve the performance for solving QF NRA formulas if we have
different decision procedures at hand and use them in combination such that
theory modules can pass on sub-problems for satisfiability check to other modules.
In SMT-RAT, such combinations of decision procedures were already available for
QF NRA problems. In this section we discuss how to extend the approach for
QF NIA and the BB framework, on the examples of theory modules implementing
the simplex, VS and CAD methods.

Given a set C of non-linear integer arithmetic constraints, the simplex method
can be used to check the consistency of the relaxed linear constraints in C, first
neglecting the non-linear ones. If simplex determines that the real relaxation of
the linear part of the problem is unsatisfiable, it returns unsat. If it finds an
integer solution that also satisfies the non-linear constraints, it returns sat. If it
finds a solution that is not completely integer, but satisfies the real relaxation of
the non-linear constraints, it creates a branching lemma and returns unknown.
Otherwise, it forwards the whole input C to another theory solving module, and
passes back the result and, if constructed, the branching lemma to its caller.

For VS, assume that we eliminate the variable xj (1 ≤ j ≤ n) from the

formula ϕjR as illustrated in Figure 2. In general, we can also use the virtual

substitution if in some of the polynomials in ϕjR the degree of xi is higher than 2:
We generate all test candidates for xj from all constraints in which xj appears
at most quadratic. If any of those test candidates leads to a satisfying solution,
we can conclude the satisfiability of ϕjR. Otherwise, we can pass the sub-problem

ϕjR to another theory solving module for satisfiability check. If it returns unsat,
we have to consider another path in the search tree of Figure 2. If it returns sat,
we can use the integer assignment of the variables in the passed sub-problem to
construct an integer solution for the remaining variables as explained in Section 4.
Finally, if the sub-call returns unknown and constructs a branching lemma, then
VS returns unknown and passes the branching lemma through. If there is no other
theory solving module to be called, the sub-call also returns unknown.

6 This form of multiple-branch lemmas are handled analogously to the 2-branch-case.

The CAD theory solving module implements a complete decision procedure
for QF NRA. For this logic, the CAD module does not pass on any sub-problems
to other solver modules.

7 Experimental Results

We consider a sequential strategy a sequence of modules that call each other
sequentially as described before and we denote it by M1 → . . . → Mk where M1
may issue sub-calls to M2 and so on. We evaluated different sequential strategies
for solving QF NIA formulas, using the following modules Mi:

– The SAT solver module MSAT behaves as explained in Section 3.
– MSATStop

works similarly except that it returns unknown if an invoked theory
solver module returns unknown, instead of continuing the search for further
Boolean assignments. The module MSATStop provides us a reference: if this
module is able to solve a problem then the problem can be considered
irrelevant for BB (as BB was not involved).

– The module MLRA implements the simplex method with branching lemma
generation, as explained in Section 6.

– The theory solver modules MVS (implementing VS) and MCAD (implementing
CAD) check the real relaxation of a QF NIA input formula. If the relaxation is
unsatisfiable they return unsat, if they coincidentally find an integer solution
they return sat, otherwise they return unknown (without applying BB).

– The VS module MVSZ constructs branching lemmas as explained in Section 4.
– The CAD modules MCADFirst

Z
and MCADLast

Z
construct branching lemmas (Sec. 5)

based on the first- resp. last-lifted variable with a non-integer assignment.
– The CAD module MCADPath

Z
constructs branching lemmas which exclude the

longest integer prefix of the found non-integer solutions (Eq. 3).
– Bit-blasting is implemented in the module MIntBlast. In our strategies it will

be combined with a preceding incremental variable bound widening module
MIncWidth, which constrains, for instance, first that all variables are in [−1, 2],
if no solution can be found, it requires all variables to be in [−3, 4] etc.

All experiments were carried out on AMD Opteron 6172 processors. Every solver
was allowed to use up to 4 GB of memory and 200 seconds of wall clock time.

For our experiments we used the largest benchmark sets for QF NIA from the
last SMT-COMP: AProve, Leipzig (both generated by automated termination
analysis) and Calypto (generated by sequential equivalence checking). Addi-
tionally, we crafted a new benchmark set Calypto∞ by removing all variable
bound constraints from Calypto and thereby obtaining unbounded problems
(together 8572 problem instances, see headline in Fig. 5e for the size of each set).
Selection of a VS heuristic The SMT-RAT strategy MSATStop → MVS could
solve 7215 sat and 84 unsat instances, ran out of time or memory for 1146
instances, and returned unknown for 127 instances. Applying the SMT-RAT strategy
MSAT → MVS to those 127 instances, we can solve an additional 30 sat instances. If

RATZ: MSAT MLRA MVSZ M
CADFirst

Z
RATblast: MIncWidth MIntBlast

RATblast.Z: MIncWidth MIntBlast RATZ

(a) The SMT-RAT strategies [14] used for the
experimental results

VSR VSZ
time # time

sat 30 714.2 93 487.3
unsat 0 0.0 10 9.2

(b) Comparison of 2 VS heuristics on 126
(101 sat, 25 unsat) for BB relevant in-
stances

CADR CADFirst
Z CADLast

Z CADPath
Z

time # time # time # time

sat 12 137.7 12 183.5 11 182.7 7 58.4
unsat 0 0.0 13 150.8 13 151.0 2 131.9

(c) Comparison of 4 CAD heuristics on 55
(27 sat, 28 unsat) for BB relevant instances

70% 80% 90% 100%

102s

103s

104s

RATZ Z3 4.4.1

RATblast AProVE

RATblast.Z

(d) Cumulative time to solve instances
from all benchmark sets

Benchmark→ AProve (8129) Calypto (138) Leipzig (167) Calypto∞ (138) all (8572)
Solver↓ # time # time # time # time # time

RATZ sat 7283 2294.8 67 71.2 9 260.4 133 298.9 7492 2925.3
unsat 73 14.3 52 40.7 0 0.0 3 < 0.1 128 55.1

RATblast sat 8025 866.3 21 35.6 156 603.3 87 16.0 8289 1521.2
unsat 12 0.4 5 0.1 0 0.0 0 0.0 17 0.5

RATblast.Z sat 8025 780.7 79 122.3 156 511.5 134 21.8 8394 1436.3
unsat 71 42.6 46 127.5 0 0.0 3 0.1 120 170.2

Z3 sat 7992 14695.5 78 19.1 158 427.6 126 57.3 8354 15199.5
unsat 102 595.9 57 117.6 0 0.0 3 2.3 162 715.8

AProVE sat 8025 7052.2 74 559.1 159 696.5 127 685.2 8385 8993.0
unsat 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0

(e) Comparison of 3 SMT-RAT strategies to currently fastest SMT solvers for QF NIA

Fig. 5: The column # contains the number of solved instances and the column
time contains the amount of seconds needed for solving these instances

we replace the module MVS by the MVSZ module, which applies branching lemmas,
we can solve further 63 sat and 10 unsat instances (see Figure 5b).

Selection of a CAD heuristic The SMT-RAT strategy MSATStop → MCAD could
solve 6656 sat and 26 unsat instances. The main reason why this approach can
already solve more than 77% of the examples lies in the nature of the CAD to
choose preferably integer sample points and, of course, in the structure of the
benchmark instances. The strategy ran out of time or memory for 1835 instances,
and returned unknown for 55 instances. On these 55 examples, we compared
the SMT-RAT strategy MSAT → MCAD and 3 other strategies replacing the MCAD

module by MCADFirst
Z

, MCADLast
Z

and MCADPath
Z

. As shown in Table 5c, we find 12
additional sat instances with the MCAD module. The BB modules MCADFirst

Z
and

MCADLast
Z

perform very similar and find 13 additional unsat instances. This is due

https://github.com/smtrat/smtrat/wiki

to the fact that almost always the assignment of only one variable was not yet
integer. With the heuristic in the module MCADPath

Z
we could solve less instances.

Combined strategies We crafted three strategies, depicted in Fig. 5a, to com-
bine different theory solver modules7. The strategy RATblast.Z combines RATblast
and RATZ by first using bit-blasting up to a width of 4 bits. If this does not yield
a solution, it continues to use RATZ.

We compared these three strategies with the two fastest SMT solvers from the
2015 SMT-COMP for QF NIA: Z3 and AProVE. Though CVC4 performed worse
than these two solvers, its experimental version solved slightly more instances
than AProVE in about half of the time; we did not include it here but expect
it to perform between Z3 and AProVE. Figure 5e shows that RATZ and RATblast
complement each other well, especially for satisfiable instances. Compared to Z3

and AProVE, RATblast.Z solves more satisfiable instances and does this even faster
by a factor of more than 10 and 6, respectively. The strategy RATZ solves less
instances, but, as shown in Figure 5d, this strategy solves the first 85 percent
of the examples faster than any other SMT-RAT strategy or SMT solver. On
unsatisfiable instances, however, Z3 is still better than SMT-RAT while AProVE is
not able to deduce unsatisfiability due to its pure bit-blasting approach.

We also tested all SMT-RAT strategies which use BB, once with and once with-
out using a branching premise. Here we could not detect any notable difference,
which we mainly relate to the fact that those problem instances, for which BB
comes to application, are almost always pure conjunctions of constraints and
involve only a small number of branching lemma liftings. For a more reliable
evaluation a larger set of QF NIA benchmarks would be needed.

8 Conclusion and Future Work

The efficiency of solving QF NIA formulas highly depends on a good strategic
combination of different procedures. In this paper we comprised two algebraic
procedures, the virtual substitution and the cylindrical algebraic decomposition
methods, in a combination with the branch-and-bound approach, which has
already been applied effectively in combination with the simplex method. We
showed by experimental evaluation that this combination highly complements
bit-blasting, the currently most efficient approach for QF NIA.

The next steps to enhance the strategy for solving QF NIA formulas could
involve interval constraint propagation in order to infer better bounds for the
variables. We also plan to further optimise the generation of branching lemmas
and of the explanations of unsatisfiability in the theory solving modules.

References

1. Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical Algebraic Decomposition I:
The Basic Algorithm. SIAM Journal on Computing 13(4), 865–877 (1984)

7 Additionally, all of these strategies employ a common preprocessing.

https://github.com/z3prover/z3/wiki
http://http://aprove.informatik.rwth-aachen.de/
http://cs.nyu.edu/acsys/cvc3/
http://http://aprove.informatik.rwth-aachen.de/
https://github.com/z3prover/z3/wiki
http://http://aprove.informatik.rwth-aachen.de/
https://github.com/z3prover/z3/wiki
http://http://aprove.informatik.rwth-aachen.de/
https://github.com/z3prover/z3/wiki
http://http://aprove.informatik.rwth-aachen.de/

2. Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical Algebraic Decomposition
II: An Adjacency Algorithm for the Plane. SIAM Journal on Computing 13(4),
878–889 (1984)

3. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Proc. of
FMCO’05, chap. Boogie: A Modular Reusable Verifier for Object-Oriented Programs,
pp. 364–387. Springer (2006)

4. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Proc. of CAV’11. vol. 6806, pp. 171–177.
Springer (2011)

5. Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in SAT
modulo theories. In: Proc. of LPAR’06. vol. 4246, pp. 512–526. Springer (2006)

6. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications,
vol. 185, chap. 26, pp. 825–885. IOS Press (2009)

7. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satis-
fiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press
(2009)

8. Borralleras, C., Lucas, S., Navarro-Marset, R., Rodŕıguez-Carbonell, E., Rubio, A.:
Solving Non-linear Polynomial Arithmetic via SAT Modulo Linear Arithmetic. In:
Proc. of CADE-22, vol. 5663, pp. 294–305. Springer (2009)

9. Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT: An open, trustable
and efficient SMT-solver. In: Proc. of CADE-22. vol. 5663, pp. 151–156. Springer
(2009)

10. Brown, C.W.: Improved Projection for Cylindrical Algebraic Decomposition. Journal
of Symbolic Computation 32(5), 447 – 465 (2001)

11. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT solver.
In: Proc. TACAS’13, vol. 7795, pp. 93–107. Springer (2013)

12. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Automata Theory and Formal Languages. vol. 33, pp. 134–183.
Springer (1975)

13. Corzilius, F., Ábrahám, E.: Virtual substitution for SMT solving. In 18th Int. Symp.
on Fundamentals of Computation Theory (2011)

14. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: An open
source C++ toolbox for strategic and parallel SMT solving. In: Proc. of SAT’15.
vol. 9340, pp. 360–368. Springer (2015)

15. Dantzig, G.B.: Linear programming and extensions. Princeton University Press
(1963)

16. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

17. Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In:
Proc. of CAV’06. vol. 4144, pp. 81–94. Springer (2006)

18. Dutertre, B.: Yices 2.2. In: Proc. of CAV’14. vol. 8559, pp. 737–744. Springer (2014)
19. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of

large non-linear arithmetik constraint systems with complex Boolean structure.
Journal on Satisfiability, Boolean Modeling and Computation 1, 209–236 (2007)

20. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:
SAT solving for termination analysis with polynomial interpretations. In: Proc. of
SAT’07. vol. 4501, pp. 340–354. Springer, Lisbon (2007)

21. Griggio, A.: A practical approach to satisfiability modulo linear integer arithmetic.
Journal on Satisfiability, Boolean Modeling and Computation 8, 1–27 (2012)

22. Hong, H.: An Improvement of the Projection Operator in Cylindrical Algebraic
Decomposition. In: Proc. of ISSAC’90. pp. 261–264. ACM (1990)

23. Khanh, T.V., Vu, X., Ogawa, M.: raSAT: SMT for Polynomial Inequality. In: Proc.
of SMT’14. p. 67 (2014)

24. Kim, H., Somenzi, F., Jin, H.: Efficient term-ITE conversion for satisfiability modulo
theories. In: Proc. of SAT’09. vol. 5584, pp. 195–208. Springer (2009)

25. McCallum, S.: An Improved Projection Operation for Cylindrical Algebraic De-
composition of Three-dimensional Space. Journal of Symbolic Computation 5(1),
141 – 161 (1988)

26. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. of TACAS’08.
vol. 4963, pp. 337–340. Springer (2008)

27. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)
28. Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and

beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997)

	A Generalised Branch-and-Bound Approach and its Application in SAT Modulo Nonlinear Integer Arithmetic

