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Abstract. Based on a Lie symmetry analysis, we construct a closed
form solution to the kinematic part of the (partial differential) Cosserat
equations describing the mechanical behavior of elastic rods. The solu-
tion depends on two arbitrary analytical vector functions and is analyt-
ical everywhere except a certain domain of the independent variables in
which one of the arbitrary vector functions satisfies a simple explicitly
given algebraic relation. As our main theoretical result, in addition to
the construction of the solution, we proof its generality. Based on this
observation, a hybrid semi-analytical solver for highly viscous two-way
coupled fluid-rod problems is developed which allows for the interactive
high-fidelity simulations of flagellated microswimmers as a result of a
substantial reduction of the numerical stiffness.
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1 Introduction

Studying the dynamics of nearly one-dimensional structures has various scien-
tific and industrial applications, for example in biophysics (cf. [11,12] and the
references therein) and visual computing (cf. [18]) as well as in civil and mechan-
ical engineering (cf. [5]), microelectronics and robotics (cf. [7]). In this regard,
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an appropriate description of the dynamical behavior of flexible one-dimensional
structures is provided by the so-called special Cosserat theory of elastic rods
(cf. [2], Ch. 8, and the original work [10]). This is a general and geometrically
exact dynamical model that takes bending, extension, shear, and torsion into
account as well as rod deformations under external forces and torques. In this
context, the dynamics of a rod is described by a governing system of twelve first-
order nonlinear partial differential equations (PDEs) with a pair of independent
variables (s, t) where s is the arc-length and t the time parameter. In this PDE
system, the two kinematic vector equations ((9a)–(9b) in [2], Ch. 8) are param-
eter free and represent the compatibility conditions for four vector functions
κ,ω,ν,v in (s, t). Whereas the first vector equation only contains two vector
functions κ,ω, the second one contains all four vector functions κ,ω,ν,v. The
remaining two vector equations in the governing system are dynamical equa-
tions of motion and include two more dependent vector variables m̂(s, t) and
n̂(s, t). Moreover, these dynamical equations contain parameters (or parametric
functions of s) to characterize the rod and to include the external forces and
torques.

Because of its inherent stiffness caused by the different deformation modes
of a Cosserat rod, a pure numerical treatment of the full Cosserat PDE system
requires the application of specific solvers; see e.g. [15,17]. In order to reduce the
computational overhead caused by the stiffness, we analyzed the Lie symmetries
of the first kinematic vector equation ((9a) in [2], Ch. 8) and constructed its
general and (locally) analytical solution in [16] which depends on three arbitrary
functions in (s, t) and three arbitrary functions in t.

In this contribution we perform a computer algebra-based Lie symmetry
analysis to integrate the full kinematic part of the governing Cosserat system
based on our previous work in [16]. This allows for the construction of a general
analytical solution of this part which depends on six arbitrary functions in (s, t).
We prove its generality and apply the obtained analytical solution in order to
solve the dynamical part of the governing system. Finally, we prove its practi-
cability by simulating the dynamics of a flagellated microswimmer. To allow for
an efficient solution process of the determining equations for the infinitesimal
Lie symmetry generators, we make use of the Maple package SADE (cf. [22]) in
addition to Desolv (cf. [8]).

This paper is organized as follows. Section 2 describes the governing PDE
system in the special Cosserat theory of rods. In Section 3, we show that the
functional arbitrariness in the analytical solution to the first kinematic vector
equation that we constructed in [16] can be narrowed down to three arbitrary
bivariate functions. Our main theoretical result is presented in Section 4, in which
we construct a general analytical solution to the kinematic part of the governing
equations by integrating the Lie equations for a one-parameter subgroup of the
Lie symmetry group. Section 5 illustrates the practicability of this approach
by realizing a semi-analytical simulation of a flagellated microswimmer. This is
based on a combination of the analytical solution of the kinematic part of the
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Cosserat PDE and a numerical solution of its dynamical part. Some concluding
remarks are given in Section 6 and limitations are discussed in Section 7.

2 Special Cosserat Theory of Rods

In the context of the special Cosserat theory of rods (cf. [2,7,10,16]), the motion
of a rod is defined by a vector-valued function

[a, b]× R 3 (s, t) 7→ (r(s, t), d1(s, t), d2(s, t)) ∈ E3 .

Here, t denotes the time and s is the arc-length parameter identifying a material
cross-section of the rod which consists of all material points whose reference
positions are on the plane perpendicular to the rod at s. Moreover, d1(s, t) and
d2(s, t) are orthonormal vectors, and r(s, t) denotes the position of the material
point on the centerline with arc-length parameter s at time t. The Euclidean
3-space is denoted with E3. The vectors d1, d2, and d3 := d1 × d2 are called
directors and form a right-handed orthonormal moving frame. The use of the
triple (d1, d2, d3) is natural for the intrinsic description of the rod deformation
whereas r describes the motion of the rod relative to the fixed frame (e1, e2, e3).
This is illustrated in Figure 1.

From the orthonormality of the directors follows the existence of so-called
Darboux and twist vector functions κ =

∑3
k=1 κkdk and ω =

∑3
k=1 ωkdk deter-

mined by the kinematic relations

∂sdk = κ× dk , ∂tdk = ω × dk . (1)

The linear strain of the rod and the velocity of the material cross-section are
given by vector functions ν := ∂sr =

∑3
k=1 νkdk and v := ∂tr =

∑3
k=1 vkdk.

r(s, t)r(s, t)d1d1

d2d2
d3d3

e1e1 e2e2

e3e3

s = as = a s = bs = b

Fig. 1: The vector set {d1,d2,d3} forms a right-handed orthonormal basis. The
directors d1 and d2 span the local material cross-section, whereas d3 is perpen-
dicular to the cross-section. Note that in the presence of shear deformations d3
is unequal to the tangent ∂sr of the centerline of the rod.
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The components of the strain variables κ and ν describe the deformation of the
rod: the flexure with respect to the two major axes of the cross-section (κ1, κ2),
torsion (κ3), shear (ν1, ν2), and extension (ν3).

The triples

κ = (κ1, κ2, κ3) , ω = (ω1, ω2, ω3) , ν = (ν1, ν2, ν3) , v = (v1, v2, v3) (2)

are functions in (s, t), that satisfy the compatibility conditions

∂t∂sdk = ∂s∂tdk , ∂t∂sr = ∂s∂tr . (3)

The substitution of (1) into the left equation in (3) leads to

κ̃t = ω̃s − κ× ω with κ̃t = ∂t

3∑
k=1

κkdk , ω̃s = ∂s

3∑
k=1

ωkdk .

On the other hand one obtains, κ̃t = κt + ω × κ and ω̃s = ωs + κ × ω with
κt = (∂tκ1, ∂tκ2, ∂tκ3) and ωs = (∂sω1, ∂sω2, ∂sω3), and therefore

κt = ωs − ω × κ . (4)

Similarly, the second compatibility condition in (3) is equivalent to

νt = vs + κ× v − ω × ν (5)

with νt = (∂tν1, ∂tν2, ∂tν3) and vs = (∂sv1, ∂sv2, ∂sv3).
The first-order PDE system (4)–(5) with independent variables (s, t) and de-

pendent variables (2) forms the kinematic part of the governing Cosserat equa-
tions ((9a)–(9b) in [2], Ch. 8). The construction of its general solution is the
main theoretical result of this paper.

The remaining part of the governing equations in the special Cosserat theory
consists of two vector equations resulting from Newton’s laws of motion. For a
rod density ρ(s) and cross-section A(s), these equations are given by

ρ(s)A(s)∂tv = ∂sn(s, t) + F (s, t) ,

∂th(s, t) = ∂sm(s, t) + ν(s, t)× n(s, t) +L(s, t) ,

where m(s, t) =
∑3
k=1mk(s, t)dk(s, t) are the contact torques, n(s, t) =∑3

k=1 nk(s, t)dk(s, t) are the contact forces, h(s, t) =
∑3
k=1 hk(s, t)dk(s, t) are

the angular momenta, and F (s, t) and L(s, t) are the external forces and torque
densities.

The contact torques m(s, t) and contact forces n(s, t) corresponding to the
internal stresses, are related to the extension and shear strains ν(s, t) as well as
to the flexure and torsion strains κ(s, t) by the constitutive relations

m(s, t) = m̂ (κ(s, t),ν(s, t), s) , n(s, t) = n̂ (κ(s, t),ν(s, t), s) . (6)
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Under certain reasonable assumptions (cf. [2,7,16]) on the structure of the right-
hand sides of (6), together with the kinematic relations (4) and (5), it yields to
the governing equations (cf. [2], Ch. 8, (9.5a)–(9.5d))

κt = ωs − ω × κ ,
νt = vs + κ× v − ω × ν ,
ρJ · ωt = m̂s + κ× m̂+ ν × n̂− ω × (ρJ · ω) +L ,
ρAvt = ns + κ× n̂− ω × (ρAv) + F ,

(7)

in which J is the inertia tensor of the cross-section per unit length. The dynam-
ical part of (7) contains parameters characterizing the rod under consideration
of ρ,A,J and the external force and torque densities F and L, whereas the
kinematic part is parameter free.

3 Analytical Form of the Darboux and Twist Functions

In [16], we constructed a general solution to (4) that is the first equation in
the PDE system (7). In so doing, we proved that the constructed solution is
(locally) analytical and provides the structure of the twist vector function ω
and the Darboux vector function κ:

ω =f − sin(p)

p
p× f +

1− cos(p)

p2
(
p (p · f)− p2 f

)
+

+ pt +
p− sin(p)

p3
(
p (p · pt)− p2 pt

)
− 1− cos(p)

p2
p× pt ,

κ =ps +
p− sin(p)

p3
(
p (p ·ps)− p2 ps

)
− 1− cos(p)

p2
p× ps ,

(8)

where f := (f1(t), f2(t), f3(t)) and p := (p1(s, t), p2(s, t), p3(s, t)) are arbitrary
vector-valued analytical functions, and p2 := p21 + p22 + p23.

It turns out that the functional arbitrariness of f and p is superfluous, and
that (8) with f(t) = 0 is still a general solution to (4). This fact is formulated
in the following proposition.

Proposition 1. The vector functions ω and κ expressed by

ω =pt +
p− sin(p)

p3
(
p (p · pt)− p2 pt

)
− 1− cos(p)

p2
p× pt , (9a)

κ =ps +
p− sin(p)

p3
(
p (p · ps)− p2 ps

)
− 1− cos(p)

p2
p× ps (9b)

with an arbitrary analytical vector function p(s, t), are a general analytical so-
lution to (4).

Proof. Let (s0, t0) be a fixed point. The right-hand sides of (9a) and (9b) satisfy
(4) for an arbitrary vector function p(s, t) analytical in (s0, t0). It is an obvious
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consequence of the fact that (8) is a solution to (4) for arbitrary f(t) analytical
in t0.

Also, the equalities (9a) and (9b) can be transformed into each other with

ω(s, t)⇔ κ(s, t) and ∂s ⇔ ∂t (10)

reflecting the invariance of (4) under (10). The equalities (9a) and (9b) are
linear with respect to the partial derivatives pt and ps, and their corresponding
Jacobians. The determinants of the Jacobian matrices Jω(∂tp1, ∂tp2, ∂tp3) and
Jκ(∂sp1, ∂sp2, ∂sp3) coincide because of the symmetry (10) and read6

J(p) := det (Jω) = det (Jκ) = 2
cos(p)− 1

p2
. (11)

Let ω(s, t) and κ(s, t) be two arbitrary vector functions analytical in (s0, t0).
We have to show that there is a vector function p(s, t) analytical in (s0, t0)
satisfying (9a) and (9b). For that, chose real constants a, b, c such that

cos(
√
a2 + b2 + c2)− 1

a2 + b2 + c2
6= 0

and set p0 := {a, b, c}. Then (9a) and (9b) are solvable with respect to the partial
derivatives of pt and ps in a vicinity of (s0, t0), and we obtain the first-order
PDE system of the form

pt = Φ(ω,p) , ps = Φ(κ,p) , (12)

where the vector function Φ is linear in its first argument and analytical in p at
p0.

Also, the system (12) inherits the symmetry under the swap (10) and is
passive and orthonomic in the sense of the Riquer-Janet theory (cf. [23] and the
references therein), since its vector-valued passivity (integrability) condition

∂sΦ(ω,p)− ∂tΦ(κ,p) = 0

holds due to symmetry. Therefore, by Riquier’s existence theorems [24] that
generalize the Cauchy-Kovalevskaya theorem, there is a unique solution p(s, t)
of (12) analytical in (s0, t0) and satisfying p(s0, t0) = p0.

�

4 General Solution to the Kinematic Equation System

In this section, we determine a general analytical form of the vector functions
ν(s, t) and v(s, t) in (2) describing the linear strain of a Cosserat rod and its ve-
locity. These functions satisfy the second kinematic equation (5) of the governing
PDE system (7) under the condition that the Darboux and the twist functions,
6 The equalities in (11) are easily verifiable with Maple (cf. [16]), Sec. 3.5.
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κ(s, t) and ω(s, t), occurring in the last equation, are given by (9a) and (9b)
which contain the arbitrary analytical vector function p(s, t).

Similarly, as we carried it out in [16] for the integration of (4), we analyze Lie
symmetries (cf. [19] and the references therein) and consider the infinitesimal
generator

X := ξ1∂s + ξ2∂t +

3∑
i=1

(
θi∂ωi

+ ϑi∂κi
+ φi∂νi + ϕi∂vi

)
(13)

of a Lie group of point symmetry transformations for (4)–(5). The coefficients
ξ1, ξ2, θi, ϑj , φm, ϕn with i, j,m, n ∈ {1, 2, 3} in (13) are functions of the inde-
pendent and dependent variables.

The infinitesimal criterion of invariance of (4)–(5) reads

X (pr)h1 = X (pr)h2 = 0 whenever h1 = h2 = 0 , (14)

where

h1 := κt − ωs + ω × κ , h2 := νt − vs − κ× v + ω × ν . (15)

In addition to those in (13), the prolonged infinitesimal symmetry generatorX(pr)

contains extra terms caused by the presence of the first-order partial derivatives
in (4) and (5).

The invariance conditions (14) lead to an overdetermined system of linear
PDEs in the coefficients of the infinitesimal generator (13). This determining sys-
tem can be easily computed by any modern computer algebra software (cf. [6]).
We make use of the Maple package Desolv (cf. [8]) which computes the deter-
mining system and outputs 138 PDEs.

Since the completion of the determining systems to involution is the most
universal algorithmic tool of their analysis (cf. [6,14]), we apply the Maple pack-
age Janet (cf. [4]) first and compute a Janet involutive basis (cf. [21]) of 263
elements for the determining system, which took about 80 minutes of computa-
tion time on standard hardware.7 Then we detected the functional arbitrariness
in the general solution of the determining system by means of the differential
Hilbert polynomial

4s2 + 18s+ 21 = 8

(
s+ 2

s

)
+ 6

(
s+ 1

s

)
+ 7 (16)

computable by the corresponding routine of the Maple package Differen-
tialThomas (cf. [3]). It shows that the general solution depends on eight arbi-
trary functions of (s, t). However, in contrast to the determining system for (4)
which is quickly and effectively solvable (cf. [16]) by the routine pdesolv built
in the package Desolv, the solution found by this routine to the involutive de-
termining system for (4)–(5) needs around one hour of computation time and
7 The computation time has been measured on a machine with an Intel(R) Xeon E5
with 3.5 GHz and 32 GB DDR-RAM.
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has a form which is unsatisfactory for our purposes, since the solution contains
nonlocal (integral) dependencies on arbitrary functions. On the other hand, the
use of SADE (cf. [22]) leads to a satisfying result. Unlike Desolv, SADE uses
some heuristics to solve simpler equations first in order to simplify the remaining
system. In so doing, SADE extends the determining systems with certain inte-
grability conditions for a partial completion to involution. In our case the routine
liesymmetries of SADE receives components of the vectors in (15) and outputs
the set of nine distinct solutions in just a few seconds. The output solution set
includes eight arbitrary functions in (s, t) which is in agreement with (16). Each
solution represents an infinitesimal symmetry generator (13).

Among the generators, there are three that include an arbitrary vector func-
tion, which we denoted by q(s, t) = (q1(s, t), q2(s, t), q3(s, t)), with vanishing
coefficients θi, ϑi, i ∈ {1, 2, 3}. The sum of these generators is given by

X0 := (−∂sq1 + q2κ3 − q3κ2) ∂ν1 + (−∂sq2 + q3κ1 − q1κ2) ∂ν2 +
(−∂sq3 + q1κ3 − q3κ1) ∂ν3 + (−∂tq1 + q2ω3 − q3ω2) ∂v1 + (17)
(−∂tq2 + q3ω1 − q1ω2) ∂v2 + (−∂tq3 + q1ω3 − q3ω1) ∂v3 .

It generates a one-parameter Lie symmetry group of point transformations (de-
pending on the arbitrary vector function q(s, t)) of the vector functions ν(s, t)
and v(s, t) preserving the equality (5) for fixed κ(s, t) and ω(s, t).

In accordance to Lie’s first fundamental theorem (cf. [19]), the symmetry
transformations

ν 7→ ν′(a) , v 7→ v′(a) with group parameter a ∈ R ,

generated by (17), are solutions to the following differential (Lie) equations whose
vector form reads

daν
′ = q × κ− qs , dav

′ = q × ω − qt , ν′(0) = ν, v′(0) = v . (18)

The equations (18) can easily be integrated, and without a loss of generality the
group parameter can be absorbed into the arbitrary function q. This gives the
following solution8 to (5):

ν = q × κ− qs , v = q × ω − qt . (19)

Proposition 2. The vector functions ω(s, t), κ(s, t), ν(s, t), and v(s, t) ex-
pressed by (9a)–(9b) and (19) with two arbitrary analytical functions p(s, t) and
q(s, t) form a general analytical solution to (4)–(5).

Proof. The fact that (9a) and (9b) form a general analytical solution to (4) was
verified in Proposition 1.

We have to show that, given analytical vector functions ν(s, t) and v(s, t)
satisfying (5) with analytical ω(s, t) and κ(s, t) satisfying (4), there exists an
8 It is easy to check with Maple that the right-hand sides of (19) satisfy (5) for
arbitrary q(s, t) if one takes (9a) and (9b) into account.
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analytical vector function q(s, t) satisfying (19). Consider the last equalities as
a system of first-order PDEs with independent variables (s, t) and a dependent
vector variable q. According to the argumentation in the proof of Proposition
1, this leads to the fact, that the equations in (19) are invariant under the
transformations

ν(s, t)⇔ v(s, t) , ω(s, t)⇔ κ(s, t) , ∂s ⇔ ∂t .

This symmetry implies the satisfiability of the integrability condition

∂t(q × κ− ν)− ∂s(q × ω − v) = 0

without any further constraints. Therefore, the system (19) is passive (involu-
tive), and by Riquier’s existence theorem, there is a solution q to (19) analytical
in a point of analyticity of ω, κ, ν, v.

�

5 Simulation of Two-Way Coupled Fluid-Rod Problems

To demonstrate the practical use of the analytical solution to the kinematic
Cosserat equations, we combine it with the numerical solution of its dynamical
part. The resulting analytical solutions (9a)–(9b) and (19) for the kinematic part
of (7) contain two parameterization functions p(s, t) and q(s, t), which can be
determined by the numerical integration of the dynamical part of (7). The sub-
stitution of the resulting analytical solutions (9a)–(9b) and (19) into the latter
two (dynamical) equations of (7), the replacement of the spatial derivatives with
central differences, and the replacement of the temporal derivatives according
to the numerical scheme of a forward Euler integrator, leads to an explicit ex-
pression.9 Iterating over this recurrence equation allows for the simulation of the
dynamics of a rod.

In order to embed this into a scenario close to reality, we consider a flag-
ellated microswimmer. In particular, we simulate the dynamics of a swimming
sperm cell, which is of interest in the context of simulations in biology and bio-
physics. Since such a highly viscous fluid scenario takes place in the low Reynolds
number domain, the advection and pressure parts of the Navier-Stokes equations
(cf. [13]) can be ignored, such that the resulting so-called steady Stokes equations
become linear and can be solved analytically. Therefore, numerical errors do not
significantly influence the fluid simulation part for which reason this scenario
is appropriate for evaluating the practicability of the analytical solution to the
kinematic Cosserat equations. The steady Stokes equations are given by

µ∆u = ∇p− F , (20)
∇ · u = 0 , (21)

9 We do not explicitly write out the resulting equations here for brevity. A construction
of a hybrid semi-analytical, semi-numerical solver is also described in our recent
contribution [17].
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in which µ denotes the fluid viscosity, p the pressure, u the velocity, and F the
force. Similar to the fundamental work in [9] we use a regularization in order to
develop a suitable integration of (20)–(21). For that, we assume

F (x) = f0 φε(x− x0),

in which φε is a smooth and radially symmetric function with
∫
φε(x) dx = 1,

is spread over a small ball centered at the point x0.
Let Gε be the corresponding Green’s function, i.e., the solution of ∆Gε(x) =

φε(x) and let Bε be the solution of ∆Bε(x) = Gε(x), both in the infinite
space bounded for small ε. Smooth approximations of Gε and Bε are given by
G(x) = −1/(4π ‖x‖) for ‖x‖ > 0 and B(x) = −‖x‖ /(8π), the solution of the
biharmonic equation ∆2B(x) = δ(x).
The pressure p satisfies ∆p = ∇ · F , which can be shown by applying the
divergence operator on (20)–(21), and is therefore given by p = f0 · ∇Gε. Using
this, we can rewrite (20) as

µ∆u = (f0 · ∇)∇Gε − f0φε

with its solution

µu(x) = (f0 · ∇)∇Bε(x− x0)− f0Gε(x− x0) ,

the so-called regularized Stokeslet.
For multiple forces f1, . . . ,fN centered at points x1, . . . ,xN , the pressure p

and the velocity u can be computed by superposition. Because Gε and Bε are
radially symmetric, we can additionally use ∇Bε(x) = B′εx/ ‖x‖ and obtain10

p(x) =

N∑
k=1

(fk · (x− xk))
G′ε(‖x− xk‖)
‖x− xk‖

, (22)

u(x) =
1

µ

N∑
k=1

[
fk

(
B′ε(‖x− xk‖)
‖x− xk‖

−Gε(‖x− xk‖)
)

(23)

+ (fk · (x− xk))(x− xk)
‖x− xk‖B′′ε (‖x− xk‖)−B′ε(‖x− xk‖)

‖x− xk‖3

]
.

The flow given by (23) satisfies the incompressibility constraint (21). Because of

∆Gε(‖x− xk‖) =
1

‖x− xk‖
(‖x− xk‖G′ε(‖x− xk‖))′ = φε(‖x− xk‖) ,

the integration of

G′ε(‖x− xk‖) =
1

‖x− xk‖

∫ ‖x−xk‖

0

sφε(s) ds

10 Since at this point, the functions φε, Gε, and Bε only depend on the norm of their
arguments, we change the notation according to this.
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leads to Gε. Similarly,

1

‖x− xk‖
(‖x− xk‖B′ε(‖x− xk‖))′ = Gε(‖x− xk‖)

leads to the expression

B′ε(‖x− xk‖) =
1

‖x− xk‖

∫ ‖x−xk‖

0

sGε(s) ds

to determine Bε. We make use of the specific function

φε(‖x‖) =
15ε4

8π(‖x‖2 + ε2)7/2
,

which is smooth and radially symmetric.
Up to now, this regularized Stokeslet (22)–(23) allows for the computation of

the velocities for given forces. Similarly, we can tread the application of a torque
by deriving an analogous regularized Rodlet; see e.g. [1]. In the inverse case, the
velocity expressions can be rewritten in the form of the equations

u(xi) =

N∑
j=1

Mij(x1, . . . ,xN )f j

for i ∈ {1, . . . , N} which can be transformed into an equation system U = MF
with a (3N × 3N)-matrix M := (Mij)i,j∈{1,...,N}. Since in general M is not
regular, an iterative solver have to be applied.

A flagellated microswimmer can be set up by a rod representing the cen-
terline of the flagellum; see [11]. Additionally, a constant torque perpendicular
to the flagellum’s base is applied to emulate the rotation of the motor. From
forces and torque the velocity field is determined. Repeating this procedure to
update the system state iteratively introduces a temporal domain and allows
for the dynamical simulation of flagellated microswimmers; see Figures 2 and
3. Compared to a purely numerical handling of the two-way coupled fluid-rod
system, the step size can be increased by four to five orders of magnitude, which
leads to an acceleration of four orders of magnitude. This allows for real-time
simulations of flagellated microswimmers on a standard desktop computer.11

6 Conclusison

We constructed a closed form solution to the kinematic equations (4)–(5) of the
governing Cosserat PDE system (7) and proved its generality. The kinematic
equations are parameter free whereas the dynamical Cosserat PDEs contain a
number of parameters and parametric functions characterizing the rod under
11 The simulations illustrated in Figures 2 and 3 can be carried out in real-time on a

machine with an Intel(R) Xeon E5 with 3.5 GHz and 32 GB DDR-RAM.
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Fig. 2: Simulation of a monotrichous bacteria swimming in a viscous fluid. The
rotation of the motor located at the back side of the bacteria’s head causes the
characteristic motion of the flagellum leading to a movement of the bacteria.

Fig. 3: Simulation of a sperm cell swimming into the direction of an egg. The
concentration gradient induced by the egg is linearly coupled with the control of
the motor. In contrast to the bacteria in Figure 2, the flagellum of a sperm cell
does not have its motor at its base as simulated here. Instead several motors are
distributed along the flagellum (cf. [20]), for which reason this simulation is not
fully biologically accurate, but still illustrates the capabilities of the presented
approach.
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consideration of external forces and torques. The solution we found depends on
two arbitrary analytical vector functions and is analytical everywhere except at
the values of the independent variables (s, t) for which the right-hand side of (11)
vanishes. Therefore, the hardness of the numerical integration of the Cosserat
system, in particular its stiffness, is substantially reduced by using the exact
solution to the kinematic equations.

The application of the analytical solution prevents from numerical instabil-
ities and allows for highly accurate and efficient simulations. This was demon-
strated for the two-way coupled fluid-rod scenario of flagellated microswimmers,
which could efficiently be simulated with an acceleration of four orders of magni-
tude compared to a purely numerical handling. This clearly shows the usefulness
of the constructed analytical solution of the kinematic equations.

7 Limitations

Because of the presence of parameters in the dynamical part of the Cosserat
PDEs, the construction of a general closed form solution to this part is hopeless.
Even if one specifies all parameters and considers the parametric functions as
numerical constants, the exact integration of the dynamical equations is hardly
possible. We analyzed Lie symmetries of the kinematic equations extended with
one of the dynamical vector equations including all specifications of all param-
eters and without parametric functions. While the determining equations can
be generated in a reasonable time, their completion to involution seems to be
practically impossible.
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