1705.03441v1 [cs.SC] 9 May 2017

arxXiv

Improved Computation of Involutive Bases

Bentolhoda Binaei!, Amir Hashemi'-?, and Werner M. Seiler®

! Department of Mathematical Sciences, Isfahan University of Technology
Isfahan, 84156-83111, Iran;

2 School of Mathematics, Institute for Research in Fundamental Sciences (IPM),
Tehran, 19395-5746, Iran
h.binaei@math.iut.ac.ir
Amir.Hashemi@cc.iut.ac.ir
3 Institut fiir Mathematik, Universitit Kassel
Heinrich-Plett-Strafle 40, 34132 Kassel, Germany
seiler@mathematik.uni-kassel.de

Abstract. In this paper, we describe improved algorithms to compute
Janet and Pommaret bases. To this end, based on the method proposed
by Moller et al. [21], we present a more efficient variant of Gerdt’s al-
gorithm (than the algorithm presented in [17]) to compute minimal in-
volutive bases. Further, by using the involutive version of Hilbert driven
technique, along with the new variant of Gerdt’s algorithm, we modify
the algorithm, given in [24], to compute a linear change of coordinates for
a given homogeneous ideal so that the new ideal (after performing this
change) possesses a finite Pommaret basis. All the proposed algorithms
have been implemented in MAPLE and their efficiency is discussed via a
set of benchmark polynomials.

1 Introduction

Grébner bases are one of the most important concepts in computer algebra for
dealing with multivariate polynomials. A Grobner basis is a special kind of gen-
erating set for an ideal which provides a computational framework to determine
many properties of the ideal. The notion of Grobner bases was originally in-
troduced in 1965 by Buchberger in his Ph.D. thesis and he also gave the basic
algorithm to compute it [2,3]. Later on, he proposed two criteria for detecting
superfluous reductions to improve his algorithm [1]. In 1983, Lazard [20] devel-
oped new approach by making connection between Grobner bases and linear
algebra. In 1988, Gebauer and Moller [10] reformulated Buchberger’s criteria in
an efficient way to improve Buchberger’s algorithm. Furthermore, Méller et al. in
[21] proposed an improved version of Buchberger’s algorithm by using the syzy-
gies of constructed polynomials to detect useless reductions (this algorithm may
be considered as the first signature-based algorithm to compute Grobner bases).
Relying on the properties of the Hilbert series of an ideal, Traverso [27] described
the so-called Hilbert-driven Grobner basis algorithm to improve Buchberger’s al-
gorithm by discarding useless critical pairs. In 1999, Faugeére [6] presented his
F4 algorithm to compute Groébner bases which stems from Lazard’s approach

http://arxiv.org/abs/1705.03441v1

[20] and uses fast linear algebra techniques on sparse matrices (this algorithm
has been efficiently implemented in MAPLE and MAGMA). In 2002, Faugere pre-
sented the famous F5 algorithm for computing Grébner bases [7]. The efficiency
of this signature-based algorithm benefits from an incremental structure and
two new criteria, namely F5 and IsRewritten criteria (nowadays known respec-
tively as signature and syzygy criteria). We remark that several authors have
studied signature-based algorithms to compute Grobner bases and as the novel
approaches in this directions we refer to e.g. [8,9].

Involutive bases may be considered as an extension of Grébner bases (w.r.t.
a restricted monomial division) for polynomial ideals which include additional
combinatorial properties. The origin of involutive bases theory must be traced
back to the work of Janet [19] on a constructive approach to the analysis of
linear and certain quasi-linear systems of partial differential equations. Then
Janet’s approach was generalized to arbitrary (polynomial) differential systems
by Thomas [26]. Based on the related methods developed by Pommaret in his
book [22], the notion of involutive polynomial bases was introduced by Zharkov
and Blinkov in [28]. Gerdt and Blinkov [13] introduced a more general concept
of involutive division and involutive bases for polynomial ideals, along with al-
gorithmic methods for their construction. An efficient algorithm was devised by
Gerdt [12] (see also [16]) for computing involutive and Grdbner bases using the
involutive form of Buchberger’s criteria (see http://invo. jinr.ru for the
efficiency analysis of the implementation of this algorithm). In this paper, we
refer to this algorithm as Gerdt’s algorithm. Finally, Gerdt et al. [17] described
a signature-based algorithm (with an incremental structure) to apply the Fj
criterion for deletion of unnecessary reductions. Some of the drawbacks of this
algorithm are as follows: Due to its incremental structure (in order to apply the
F5 criterion), the selection strategy should be the POT module monomial or-
dering (which may be not efficient in general). Further, to respect the signature
of computed polynomials, the reduction process may be not accomplished and
(that may increase the number of intermediate polynomials) that may signifi-
cantly affect the efficiency of computation. Finally, the involutive basis that this
algorithm returns may be not minimal.

The aim of this paper is to provide an effective method to calculate Pommaret
bases. These bases introduced by Zharkov and Blinkov in [28] are a particular
form of involutive bases containing many combinatorial properties of the ideals
they generate, see e.g. [23-25] for a comprehensive study of Pommaret bases.
They are not only of interest in computational aspects of algebraic geometry
(e.g. by providing deterministic approaches to transform a given ideal into some
classes of generic positions [24]), but they also serve in theoretical aspects of
algebraic geometry (e.g. by providing simple and explicit formulas to read off
many invariants of an ideal like dimension, depth and Castelnuovo-Mumford
regularity [24]).

Relying on the method developed by Moller et al. [21], we give a new signature-
based variant of Gerdt’s algorithm to compute minimal involutive bases. In par-
ticular, the experiments show that the new algorithm is more efficient than Gerdt

et al. algorithm [17]. On the other hand, [24] proposes an algorithm to compute
deterministically a linear change of coordinates for a given homogeneous ideal
so that the changed ideal (after performing this change) possesses a finite Pom-
maret basis (note that in general a given ideal does not have a finite Pommaret
basis). In doing so, one computes iteratively the Janet bases of certain polyno-
mial ideals. By applying the involutive version of Hilbert driven technique on the
new variant of Gerdt’s algorithm, we modify this algorithm to compute Pom-
maret bases. We have implemented all the algorithms described in this article
and we assess their performance on a number of test examples.

The rest of the paper is organized as follows. In the next section, we will
review the basic definitions and notations which will be used throughout this
paper. Section 3 is devoted to the description of the new variant of Gerdt’s
algorithm. In Section 4, we present the improved algorithm to compute a linear
change of coordinates for a given homogeneous ideal so that the new ideal has a
finite Pommaret basis. We analyze the performance of the proposed algorithms
in Section 5. Finally, in Section 6 we conclude the paper by highlighting the
advantages of this work and discussing future research directions.

2 Preliminaries

In this section, we review the basic definitions and notations from the theory of
Grobner bases and involutive bases that will be used in the rest of the paper.
Throughout this paper we assume that P = k[z1,...,2,] is the polynomial
ring (where k is an infinite field). We consider also homogeneous polynomials
fi,-.., fr € P and the ideal T = (f1,..., fx) generated by them. We denote
the total degree of and the degree w.r.t. a variable x; of a polynomial f € P
respectively by deg(f) and deg;(f). Let M = {&f*---z0" | 0y > 0,1 < i < n}
be the monoid of all monomials in P. A monomial ordering on M is denoted by
< and throughout this paper we shall assume that z,, < --- < x;. The leading
monomial of a given polynomial f € P w.r.t. < will be denoted by LM(f). If
F C P is a finite set of polynomials, we denote by LM(F') the set {LM(f) |
f € F}. The leading coefficient of f, denoted by LC(f), is the coefficient of
LM(f). The leading term of f is defined to be LT(f) = LM(f) LC(f). A finite
set G = {g1,...,9x} C P is called a Grobner basis of T w.r.t < if LM(Z) =
(LM(¢g1),.-.,LM(gg)) where LM(Z) = (LM(f) | f € Z). We refer e.g. to [4] for
more details on Grobner bases.

Let us recall the definition of Hilbert function and Hilbert series of a homo-
geneous ideal. Let X C P and s a positive integer. We define the degree s part
X, of X to be the set of all homogeneous elements of X of degree s.

Definition 1. The Hilbert function of Z is defined by HFz(s) = dimy(Ps/Zs)
where the right-hand side denotes the dimension of Ps/Zs as a k-linear space.

It is well-known that the Hilbert function of Z is the same as that of LT(Z) (see
e.g. [4, Prop. 4, page 458]) and therefore the set of monomials not contained in
LT(Z) forms a basis for P;/Zs as a k-linear space (Macaulay’s theorem). This

observation is the key idea behind the Hilbert-driven Grobner basis algorithm.
Roughly speaking, suppose that Z is a homogeneous ideal and we want to com-
pute a Grobner basis of Z by Buchberger’s algorithm in increasing order w.r.t.
the total degree of the S-polynomials. Assume that we know beforehand HFz(s)
for a positive integer s. Suppose that we are at the stage where we are looking at
the critical pairs of degree s. Consider the set P of all critical pairs of degree s.
Then, we compare HFz(s) with the Hilbert function at s of the ideal generated
by the leading terms of all already computed polynomials. If they are equal, we
can remove P.

Below, we review some definitions and relevant results on involutive bases
theory (see [12] for more details). We recall first involutive divisions based on
partitioning the variables into two subsets of the variables, the so-called multi-
plicative and non-multiplicative variables.

Definition 2. An involutive division L is given on M if for any finite set
U C M and any u € U, the set of variables is partitioned into the subset of
multiplicative Mz (u,U) and non-multiplicative variables NMg(u,U) such that
the following three conditions hold where L(u,U) denotes the monoid generated
by Mz (u,U):

1 vy,u e U, ul(u,U)NvL(v,U) #0 = v e vl(v,U) orv e ul(u,U),
2. veU,veul(u,U)= L(v,U)C L(u,U),
3. VCcUandueV = L(u,U) C L(u,V).

We shall write u | w if w € ul(u,U). In this case, u is called an L-involutive
divisor of w and w an L-involutive multiple of u.

We recall the definitions of the Janet and the Pommaret division, respectively.

Ezxample 3. Let U C P be a finite set of monomials. For each sequence dy, ..., d,
of non-negative integers and for each 1 <7 < n we define the subsets

[di,...,di] ={u €U |d; =deg;(u), 1 <j<i}.

The variable z1 is Janet multiplicative (denoted by J-multiplicative) for u € U
if deg;(u) = max{deg,(v) | v € U}. For i > 1 the variable z; is Janet multi-
plicative for v € [dy,...,d;—1] if deg;(u) = max{deg,;(v) | v € [d1,...,di—1]}.

Example 4. For u = :vfl e xzk with dj > 0 the variables {zy,...,z,} are con-

sidered as Pommaret multiplicative (denoted by P-multiplicative) and the other
variables as Pommaret non-multiplicative. For « = 1 all the variables are multi-
plicative. The integer k is called the class of u and is denoted by cls(u).

The Pommaret division is called a global division, because the assignment of the
multiplicative variables is independent of the set U. In order to avoid repeating
notations let £ always denote an involutive division.

Definition 5. The set F' C P is called involutively head autoreduced if for each
f € F there is no h € F\ {f} with LM(h) |z LM(f).

Definition 6. Let I C P be an ideal. An L-involutively head autoreduced subset
G C T is an L-involutive basis for T (or simply either an involutive basis or

L-basis) if for all f € T there exists g € G so that LM(g) |z LM(f).

Example 7. Let T = {a%x3, x102, 2125} C k[z1, 22, v3]. Then, {2?z3, v122, 123,
x3xy} is a Janet basis for Z and {2323, 2120, 2123, 230, 2 P00, 2323 | > 0} is
a (infinite) Pommaret basis for Z. Indeed, Janet division is Noetherian, however
Pommaret division is non-Noetherian (see [14] for more details).

Gerdt in [12] proposed an efficient algorithm to construct involutive bases based
on a completion process where prolongations of generators by non-multiplicative
variables are reduced. This process terminates in finitely many steps for any
Noetherian division.

Definition 8. Let F C P be a finite. Following the notations in [24], the invo-
lutive span generated by F is denoted by (F)r <.

Thus, a set F' C Z is an involutive basis for Z if we have T = (F) . <.

Definition 9. Let F' C T be an involutively head autoreduced set of homoge-
neous polynomials. The involutive Hilbert function of F is defined by IHF p(s) =

dimk(Ps/(<F>£,<)S)-

Since F' is involutively head autoreduced, one easily recognizes that (F)g < =
D e r k[M(LM(f), LM(F))] - f. Thus using the well-known combinatorial for-
mulas to count the number of monomials in certain variables, we get

mr = (") B (T e)

fEF

where ky is the number of multiplicative variables of f (see e.g. [12]). We remark
that an involutively head autoreduced subset F' C Z is an involutive basis for 7
if and only if HFz(s) = THFg(s) for each s.

3 Using Syzygies to Compute Involutive Bases

We now propose a variant of Gerdt’s algorithm [12] by using the intermediate
computed syzygies to compute involutive bases and especially Janet bases. For
this, we recall briefly the signature-based variant of Moller et al. algorithm [21]
to compute Grobner bases (the practical results are given in Section 5).

Definition 10. Let us consider F = (fi,..., fr) € P*. The (first) syzygy mod-
ule of F is defined to be Syz(F) = {(h1,...,hs) | hi € P,SF_, hifi = 0}.

Schreyer in his master thesis proposed a slight modification of Buchberger’s
algorithm to compute a Grobner basis for the module of syzygies of a Grobner
basis. The construction of this basis relies on the following key observation (see
[5]): Let G = {g1,.-..,9s} be a Grébner basis. By tracing the dependency of each

SPoly(g;, g;) on G we can write SPoly(g;, g;) = Y 1_; @ijrgr With a;;, € P. Let
e1,..., e, be the standard basis for P* and m;; = lem(LT(g;),LT(g;)). Set

Sij = mm—/ LT(gZ)el — ml-_,j/ LT(gJ)eJ — (aijlel + aijgeg —+ -4 aijses).

Definition 11. Let G = {g1,...,9s} C P. Schreyer’s module ordering is defined
as follows: 2P e; <5 x%e; if LT(2Pg;) < LT(x%g;) and breaks ties by i < j.

Theorem 12 (Schreyer’s Theorem). For a Grébner basis G = {g1,...,9s}
the set {s;; | 1 <i < j < s} forms a Grobner basis for Syz(gi,...,gs) w.r.t. <.

Ezample 13. Let F = {zxy — z,2% — y} C k[z,y]. The Grébner basis of F w.r.t.
T <diex ¥ is G ={g1 = 2y — 2,92 = 2®> — y, 93 = y*> — y} and the Grobner basis
of Syz(g1,92,93) is {(z,—y +1,-1), (—z,y*> = 1,—2%2 + y + 1), (y,0, —2)}.

According to this observation, Moller et al. [21] proposed a variant of Buch-
berger’s algorithm by using the syzygies of constructed polynomials to remove
superfluous reductions. Algorithm 1 below corresponds to it with a slight mod-
ification to derive a signature-based algorithm to compute Grobner bases. We
associate to each polynomial f, the two-tuple p = (f, me;) where Poly(p) = f is
the polynomial part of f and Sig(p) = me; is its signature. Further, the function
NoRMALFORM(f, G) returns a remainder of the division of f by G. Further, if
Sig(p) = me; in the first step of reduction process we must not use f; € G. We

Algorithm 1 GROBNERBASIS
Input: A set of polynomials F' C P; a monomial ordering <
Output: A Grobner basis G for (F)
G :={} and syz := {}
P:={(F[i],es)|i=1,...,|F|}
while P # () do
select (using normal strategy) and remove p € P
if #s¢€syzst. s|Sig(p) then
f = Poly(p)
h := NORMALFORM(f, G)
sy i= sy=U {Sig(n)}

if h#0 then
j=|G|+1
for g € G do
P:=PU{(r.h,r.e;)} s.t. r.LM(h) = LCM(LM(g),LM(h))
G:=GU {h}
syz := syz U {LM(g).e; | LM(h) and LM(g) are coprime}
end for
end if
end if
end while
return (G)

show now how to apply this structure to improve Gerdt’s algorithm [16].

Definition 14. Let F = (fi,..., fx) C P* be a sequence of polynomials. The
involutive syzygy module ISYZ(F) of F is the set of all (h,...,h) € P*¥ so
that Y, hifi = 0 where h; € K[Me(LM(f;), LM(F))].

[24, Thm. 5.10] contains an involutive version of Schreyer’s theorem replacing
S-polynomials by non-multiplicative prolongations and using involutive division.
Algorithm 2 below represents the new variant of Gerdt’s algorithm for comput-
ing involutive bases using involutive syzygies. For this purpose, we associate to
each polynomial f, the quadruple p = (f,g,V,m.e;) where f = Poly(p) is the
polynomial itself, g = Anc(p) is its ancestor, V' = NM(p) is the list of non-
multiplicative variables of f which have been already processed in the algorithm
and m.e; = Sig(p) is the signature of f. If P is a set of quadruple, we denote by
Poly(P) the set {Poly(p) | p € P}.

Algorithm 2 INVOLUTIVEBASIS
Input: A finite set F' C P; an involutive division £; a monomial ordering <
Output: A minimal £-basis for (F)
F :=sort(F, <)
T:={(F[1], F[1],0,e1)}
Q= {(F[Z]7F[Z]7®7el) | i = 27"'7|F|}
syz = {}
while Q # 0 do
Q =sort(Q, <s)
p=Q[l]
if #s € syz s.t s | Sig(p) with non-constant quotient then
h := INVOLUTIVENORMALFORM(p, T, L, <)
syz := syz U {h[2]}
if h =0 and LM(Poly(p)) = LM(Anc(p)) then
Q:={q € Q| Anc(q) # Poly(p)}
end if
if h # 0 and LM(Poly(p)) # LM(h) then
for ¢ € T with proper conventional division LM (Poly(k)) | LM(Poly(g)) do
Q:=QU{q}
T:=T\{q}
end for
j=T+1
T :=TU{(h,h,0,e;)}
else
T = TU {(h, Anc(p), NM(p), Sig(p))}
end if
for ¢ €T and z € NM(LM(Poly(q)), LM(
Q = QU {(z.Poly(g), Anc(q), 0, . Sig(q))
NM(q) := NM(q) U NM,(LM(Poly(q)), LM(Poly(T"))) U{xz}
end for
end if
end while
return (Poly (7))

lfoly(T)) \ NM(q)) do

In this algorithm, the functions sort(X, <) and sort(X, <) sort X by increas-
ing, respectively, LM(X) w.r.t. < and {Sig(p) | p € X} w.r.t. <s. The involutive
normal form algorithm is given in Algorithm 3.

Algorithm 3 INVOLUTIVENORMALFORM

Input: A quadruple p; a set of quadruples T'; an involutive division £; a monomial
ordering <
Output: An L-normal form of p modulo T, and the corresponding signature, if any
S :={} and h := Poly(p) and G := Poly(T')
while & has a monomial m which is £-divisible by G do
select g € G with LM(g) |z m
if m = LM(Poly(p)) and (m/LM(g).Sig(g) = Sig(p) or CRITERIA(h, g)) then
return (0, 5)
end if
if m = LM(Poly(p)) and m/LM(g). Sig(g) <s Sig(p) then
S:=Su{Sig(p)}
end if
h:=h —cm/LT(g).g where c is the coefficient of m in h
end while
return (h,S)

Furthermore, we apply the involutive form of Buchberger’s criteria from [12].
We say that CRITERIA(p,g) holds if either Cy(p,g) or Ca(p,g) holds where
Ci(p, g) is true if LM(Anc(p)). LM(Anc(g)) = LM(Poly(p)) and Ca(p, g) is true
if LCM (LM (Anc(p)), LM(Anc(g))) properly divides LM (Poly(p)).

Remark 15. We shall remark that, due to the second if-loop in Algorithm 3,
if m;e; is added into syz then there exists an involutive representation of the
form m;g; = Zﬁ:l hjg; + h where T = {gi1,...,9¢} C P is the output of the
algorithm, h is £-normal form of p modulo T" and LM(h;)e; <, m;e; for each j.

In the next proof, by an abuse of notation, we refer to the signature of a
quadruple as the signature of its polynomial part.

Theorem 16. INVOLUTIVEBASIS terminates in finitely many steps (if L is a
Noetherian division) and returns a minimal involutive basis for its input ideal.

Proof. The termination and correctness of the algorithm are inherited from those
of Gerdt’s algorithm [12] provided that we show that any polynomial removed
using syzygies is superfluous. This happens in both algorithms. Let us deal
first with Algorithm 2. Now, suppose that for p € @ there exists s € syz
so that s | Sig(p) with non-constant quotient. Suppose that Sig(p) = m;e;
and s = mle; where m; = wm] with v # 1. Let T = {¢1,...,9¢} C P be
the output of the algorithm and mjg; = Z§:1 h;g; + h be the representa-
tion of mjg; with g; € T,h,h; € P and h the involutive remainder of the
division of m.g; by T. Then, from the structure of both algorithms, it yields

that LM(hjg;) < LM(m}g;). In particular, we have LM(h;)e; <, mje; for each
j. This follows that LM(uh;)e; <, umje; = mse; for each j. On the other
hand, if h # 0 then again by the structure of the algorithm wh has a signa-
ture less than m;e;. For each j and for each term ¢ in h; we know that the
signature of utg; is less than m;e; and by the selection strategy used in the
algorithm which is based on Schreyer’s ordering, utg; should be studied before
m}g; and therefore it has an involutive representation in terms of T'. Further-
more, the same holds also for uh provided that A # 0. These arguments show
that m}g; is unnecessary and it can be omitted. Now we turn to Algorithm 3.
Let p € Q and g € T so that LM(h) = uwLT(g) and Sig(p) = u Sig(g) where
h = Poly(p) and u is a monomial. Using the above notations, let Sig(p) = m;e;
and Sig(g) = mle; where m; = um). Further, let m}g;, = Zle hjg; + g be
the representation of m/g; with LM(h;)e; <5 mje; for each j. It follows from
the assumption that LM(h,g;) < LM(m}g;) = LM(g) for each j. We can write
umlg; = Z§:1 uh;g; + ug. Since LM(uhj)e; <, umje; = m;e; for each j then,
by repeating the above argument, we deduce that uh;g; for each j has an invo-
lutive representtaion. Therefore, um/)g; has a representation using the fact that
u is multiplicative for g. Thus h has a representation and it can be removed. O

4 Hilbert Driven Pommaret Bases Computations

As we mentioned Pommaret division is not Noetherian and therefore, a given
ideal may not have a finite Pommaret basis. However, if the ideal is in quasi-
stable position (see Def. 19) it has a finite Pommaret basis. On the other hand,
a generic linear change of variables transforms an ideal in such a position. Thus,
one of the challenges in this direction is to find a linear change of variables so
that the ideal after performing this change possesses a finite Pommaret basis.
[24] proposes a deterministic algorithm to compute such a linear change by com-
puting repeatedly the Janet basis of the last transformed ideal. In this section,
by using the algorithm described in Section 3, we show how one can incorporate
an involutive version of Hilbert driven strategy to improve this algorithm.

Algorithm 4 HDQUASISTABLE

Input: A finite set F' C P and a monomial ordering <
Output: A linear change @ so that (@(F)) has a finite Pommaret basis
@ := () and J :=INVOLUTIVEBASIS(F, J, <) and A :=TEST(LM(J), <)
while A # true do

G := substitution of ¢ := A[3] — A[3] 4+ cA[2] in J for a random choice of ¢ € K

Temp :=HDINVOLUTIVEBASIS(G, J, <)

B :=TEST(LM(T'emp))

if B # A then

¢:=¢ ¢pand J:=Tempand A:=B

end if
end while
return (P)

It is worth noting that in [24] it is proposed to perform a Pommaret head
autoreduced process on the calculated Janet basis at each iteration. However,
we do not need to perform this operation because each computed Janet basis
is minimal and by [11, Cor. 15] each minimal Janet basis is Pommaret head
autoreduced. All the used functions are described below. By the structure of the
algorithm, we first compute a Janet basis for the input ideal using INVOLUTIVE-
Basis algorithm. From this basis, one can read off easily the Hilbert function
of the input ideal. Further, the Hilbert function of an ideal does not change
after performing a linear change of variables. Thus we can apply this Hilbert
function in the next Janet bases computations as follows. The algorithm has the
same structure as the INVOLUTIVEBASIS algorithm and so we remove the similar
lines. We add the next written lines in HDINVOLUTIVEBASIS algorithm between
p := Q1] and the first if-loop in INVOLUTIVEBASIS algorithm.

Algorithm 5 HDINVOLUTIVEBASIS

Input: A set of monomials F'; an involutive division £ ; a monomial ordering <
Output: A minimal L-involutive basis for (F')

d := deg(p)
while HF () (d) = THF7(d) do
remove from @ all ¢ € Q s.t. deg(Poly(q)) =d

if Q = 0 then
return (Poly (7))
else
p:= Q]
d = deg(p)
end if

end while

Algorithm 6 TEST
Input: A finite set U of monomials
Output: True if any element of U has the same number of Pommaret and Janet
multiplicative variables, and false otherwise
if Ju e U s.t. Mp <(u,U) # Mg, <(u,U) then
Vi=Mg <(u,F)\ Mp <(u, F)
return(false, V1], Tcis(u))
end if
return (true)

Theorem 17. HDQUASISTABLE algorithm terminates in finitely many steps
and it returns a linear change of variables for a given homogeneous ideal so that
the changed ideal (after performing the change on the input ideal) possesses a
finite Pommaret basis.

Proof. Let Z be the ideal generated by F'; the input of HDQUASISTABLE al-
gorithm. The termination of this algorithm follows, from one side, from the
termination of the algorithms to compute Janet bases. From the other side, [24,
Prop. 2.9] shows that there exists an open Zariski set U of k™™ so that for
each linear change of variables, say @ corresponding to an element of U we have
&(7Z) has a finite Pommaret basis. Moreover, he proved that the process of find-
ing such a linear change termintaes in finitely many steps (see [24, Rem. 9.11]).
Taken together, these arguments show that HDQUASISTABLE algorithm termi-
nates. To prove the correctness, using the notations of HDINVOLUTIVEBASIS
algorithm, we shall prove that any p € @) removed by Hilbert driven strategy
reduces to zero. In this direction, we recall that any change of variables is a
linear automorphism of P, [18, page 52]. Thus, for each 4, the dimension over k
of components of degree ¢ of Z and that of 7 after the change remains stable.
This yields that the Hilbert function of Z does not change after a linear change
of variables. Let J be the Janet basis computed by INVOLUTIVEBASIS. One can
readily observe that HFz(d) = THF ;(d) for each d, and therefore from the first
Janet basis one can derive the Hilbert function of Z and use it to improve the
next Janet bases computations. Now, suppose that F' is the input of HDINVO-
LUTIVEBASIS algorithm, p € @ and HFz(d) = IHF(d) for d = deg(Poly(p)). It
follows that dimy ((F)q) = dimy((Poly(T))4) and therefore the polynomials of
Poly(T') generate involutively whole (F); and this shows that p is superfluous
which ends the proof. O

Remark 18. We remark that we assumed that the input of INVOLUTIVEBASIS
and HDQUASISTABLE algorithms should be homogeneous, however the former
algorithm works also for non-homogeneous ideals as well. Further, the latter algo-
rithm also may be applied for non-homogeneous ideals provided that we consider
the affine Hilbert function for such ideals; i.e. HFz(s) = dimy (P<s/Z<s).

[24] provides a number of equivalent characterizations of the ideals which have
finite Pommaret bases. Indeed, a given ideal has a finite Pommaret basis if only
if the ideal is in quasi stable position (or equivalently if the coordinates are
d-regular) see [24, Prop. 4.4].

Definition 19. A monomial ideal Z is called quasi stable if for any monomial
m € T and all integers i,j,s with 1 < j <i<mn and s >0, if x5 | m there exists
an integert > 0 such that x‘;m/xf € Z. A homogeneous ideal T is in quasi stable
position if LT(Z) is quasi stable.

Example 20. The ideal Z = (x3z3, 23, 23) C k[z, v, 2] is a quasi stable monomial
ideal and its Pommaret basis is {z3z3, 23, 3, v123w3, 2123, 232323, 2323 }.

5 Experiments and Comparison

We have implemented both algorithms INVOLUTIVEBASIS and HDQUASISTABLE
in MAPLE 17%. It is worth noting that, in the given paper, we are willing to

4 The MAPLE code of the implementations of our algorithms and examples are avail-
able at http://amirhashemi.iut.ac.ir/softwares

compare behavior of INVOLUTIVEBASIS and HDQUASISTABLE algorithms with
Gerdt et al. [17] and QUASISTABLE [24] algorithms, respectively (we shall remark
that QUASISTABLE has the same structure as the HDQUASISTABLE, however to
compute Janet bases we use Gerdt’s algorithm). For this purpose, we used some
well-known examples from computer algebra literature. All computations were
done over @, and for the input degree-reverse-lexicographical monomial order-
ing. The results are shown in the following tables where the time and memory
columns indicate, respectively, the consumed CPU time in seconds and amount
of megabytes of used memory. The C; and C5 columns show, respectively, the
number of polynomials removed by C; and Cj criteria by the corresponding
algorithm. The sixth column shows the number of polynomials eliminated by
the new criterion related to syzygies applied in INVOLUTIVEBASIS and INVO-
LUTIVENORMALFORM algorithms. The F5 and S columns show the number of
polynomials removed, respectively, by F5 and super-top-reduction criteria. Three
last columns represent, respectively, the number of reductions to zero, the num-
ber and the maximum degree of polynomials in the final involutive basis (we
note that for Gerdt et al. algorithm the number of polynomials is the size of the
basis after the minimal process). The computations in this paper are performed
on a personal computer with 2.70 GHz Intel(R) Core(TM) i7-2620M CPU, 8 GB
of RAM, 64 bits under the Windows 7 operating system.

Liu time memory |C1| Ca [Syz| Fs | S |redz|poly|deg
INVOLUTIVEBASIS 1.09 37214 | 4| 3 2 -1-125[19] 6
Gerdt et al. 2.901 41189 |[7]139 | - [25[0] 1 19 [7
Noon time memory [C1| C2 |Syz| F5 | S |[redz|poly|deg
INVOLUTIVEBASIS 3.822 43.790 | 4] 15|16 | - |-]69|51]10
Gerdt et al. 45.271 | 670.939 | 8 (107 | - [49|3| 17 | 51 |10
Haas3 time memory |Ci| Ca [Syz| Fs | S |redz|poly|deg
INVOLUTIVEBASIS 8.424 95.172 | 0| 20 [24| - [-]203] 73 [13
Gerdt et al. 41.948 | 630.709 | 1| 88 | - [88|16 68 | 73 | 13
Sturmfels-Eisenbud|| time memory |C1| Ca [Syz| Fs | S |redz|poly|deg
INVOLUTIVEBASIS 22.932 | 255.041 |28 103 |95 - | -[245[100| 6
Gerdt et al. 2486.687(30194.406(29|1379| - | 84 |11| 40 [100| 9
Lichtblau time memory [C1| C2 |Syz| F5 | S [redz|poly|deg
INVOLUTIVEBASIS 24.804 391.3 0| 5 6| -]-[19]35]11
Gerdt et al. 205.578 |1 3647.537 | 0 | 351 | - | 18| 0| 31 | 35 |19
Eco7 time memory |Ci| Ca [Syz| Fs | S |redz|poly|deg
INVOLUTIVEBASIS 40.497 | 473.137 |51 21 [30| - [-]201] 45 | 6
Gerdt et al. 1543.068(25971.714|63 [1717| - [175[8| 18 | 45 |11
Katsurab time memory [C1| C2 |Syz| F5 | S [redz|poly|deg
INVOLUTIVEBASIS 46.956 | 630.635 [21] O 2| -]-1681]23]12
Gerdt et al. 42.416 | 621.551 |62 73 | - [114[1]| 21 | 23 | 8
Katsura6 time memory |Ci| Ca [Syz| Fs | S |redz|poly|deg
INVOLUTIVEBASIS 81.526 | 992.071 |[43| O 4 - |-[171] 43 | 8
Gerdt et al. 608.325 | 795.196 [77(392| - 2091 41 | 43 |11

As one can observe INVOLUTIVEBASIS is a signature-based variant of Gerdt’s
algorithm which has a structure closer to Gerdt’s algorithm and it is more effi-
cient than Gerdt et al. algorithm. Moreover, we can see the detection of criteria

and the number of reductions to zero by the algorithms are different. Indeed,
this difference is due to the selection strategy used in each algorithm. More pre-
cisely, in the Gerdt et al. algorithm the set of non-multiplicative prolongations is
sorted by POT ordering however in INVOLUTIVEBASIS it is sorted using Schreyer
ordering. However, one needs to implement it efficiently in C/C++ to be able
to compare it with GINV software®.

The next tables illustrate an experimental comparison of HDQUASISTABLE
and QUASISTABLE algorithms. In these tables HD column shows the number of
polynomials removed by Hilbert driven strategy in the corresponding algorithm.
Further, the chen column shows the number of linear changes that one needs
to transform the corresponding ideal into quasi stable position. The deg column
represents the maximum degree of the output Pommaret basis (which is the
Castelnuovo-Mumford regularity of the ideal, see [24]). Further, each column
shows the number of detection by corresponding criterion for all computed Janet
bases. Finally, we shall remark that in the next tables we use the homogenization
of the generating set of the test examples used in the previous tables. In addition,
the computation of Janet basis of an ideal generated by a set F' and the one of
the ideal generated by the homogenization of F' are not the same. For example,
the CPU time to compute the Janet basis of the homogenization of Lichtblau
example is 270.24 sec..

Liu time memory |Cp| C2 [Syz| HD |redz|chen|deg
HDQUASISTABLE 4.125 409.370 4 3 2193 | 56 4 6
QUASISTABLE 9.56 1067.725 | 14| 3 - - [151 4 6
Katsurab time memory |C7| Cs [Syz| HD |redz|chen|deg
HDQUASISTABLE 67.234 9191.288 [44] 3 6 |185]168| 2 8
QUASISTABLE 145.187 | 26154.263 [86| 29 | - - |359] 2 8
‘Weispfenning94 time memo C1| C2 |Syz| HD |reds |chen|deg
HDQUASISTABLE 110.339 6268.532 0 1 9| 45 170 1 |15
QUASISTABLE 243.798 | 16939.468 | 0 2 - - 85 1 |15
Noon time memory |C7| Cs [Syz| HD |redz|chen|deg
HDQUASISTABLE 667.343 | 66697.995 | 4 | 25 | 6 [325[119| 4 |11
QUASISTABLE 1210.921 | 205149.994 | 16 | 35 | - - 450 4 |11
Sturmfels-Eisenbud time memory |Cp| C2 [Syz| HD |redz|chen|deg
HDQUASISTABLE 1507.640 | 125904.515 | 86 | 308 |440|1370(|1804| 12 | 8
QUASISTABLE 843.171 | 96410.344 |218|1051| - - [3614| 12 | 8
Eco7 time memory |C7| Cs [Syz| HD |redz|chen|deg
QUASISTABLE 2182.296 | 241501.340 [298] 98 [373|1523[1993| 8 |11
QUASISTABLE 2740.734 | 500857.600 [547| 725 | - - |3889] 8 |11
Haas3 time memory |Cp| C2 [Syz| HD |redz|chen|deg
HDQUASISTABLE 5505.375 | 906723.699 | 0 0 |91 84 |255| 1 |33
QUASISTABLE 10136.718(1610753.428| 1 | 120 | - - (430 1 |33
Lichtblau time memory |C7| Cs [Syz| HD |redz|chen|deg
HDQUASISTABLE [[16535.593[2051064.666| 0 | 44 |266| 217|265 | 2 |30
QUASISTABLE 18535.625(2522847.256| 0 | 493 | - - | 751 2 |30

5 See http://invo.jinr.ru

6 Conclusion and Perspective

In this paper, a modification of Gerdt’s algorithm [16] which is a signature-based
version of the involutive algorithm [12,16] to compute minimal involutive bases
is suggested. Additionally, we present a Hilbert driven optimization of the pro-
posed algorithm, to compute (finite) Pommaret bases. In doing so, the proposed
algorithm computes iteratively Janet bases by using the modified Gerdt’s al-
gorithm and use them, in accordance to ideas of [24], to perform the variable
transformations. The new algorithms have been implemented in MAPLE and
they are compared with the Gerdt’s algorithm and with the algorithm presented
in [24] in terms of the CPU time and used memory, and several other criteria.
For all considered examples, the MAPLE implementation of the new algorithms
are shown to be superior over the existing ones. One interesting research direc-
tion might be to develop a new version of the proposed signature-based version
of the involutive algorithm by incorporating the advantages of the algorithm in
[16], in particular of the Janet trees [15]. Furthermore, it would be of interest to
study the behavior of different possible techniques to improve the computation
of Pommaret bases.

Acknowledgments.

The research of the second author was in part supported by a grant from IPM (No. 94550420).

References

1. Buchberger, B.: A criterion for detecting unnecessary reductions in the construc-
tion of Grébner-bases. Symbolic and algebraic computation, EUROSAM ’79, int.
Symp., Marseille 1979, Lect. Notes Comput. Sci. 72, 3-21 (1979). (1979)

2. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. Innsbruck: Univ. Inns-
bruck, Mathematisches Institut (Diss.) (1965)

3. Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: An algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial ideal.
Translation from the German. J. Symb. Comput. 41(3-4), 475-511 (2006)

4. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms. An introduction
to computational algebraic geometry and commutative algebra. 3rd ed. New York,
NY: Springer, 3rd ed. edn. (2007)

5. Cox, D.A., Little, J., O’Shea, D.: Using algebraic geometry, Graduate Texts in
Mathematics, vol. 185. Springer, New York, second edn. (2005)

6. Faugere, J.C.: A new efficient algorithm for computing Grébner bases (Fy). J. Pure
Appl. Algebra 139(1-3), 61-88 (1999)

7. Faugere, J.C.: A new efficient algorithm for computing Groébner bases without
reduction to zero (Fs). In: Proceedings of theinternational symposium on symbolic
and algebraic computation, ISSAC’02. Lille, France, July 07-10, pp. 75-83 (2002)

8. Gao, S., Guan, Y., Volny, F.: A new incremental algorithm for computing Groebner
bases. In: Proceedings of the international symposium on symbolic and algebraic
computation, ISSAC’10, Munich, Germany, July 25-28, pp. 13-19 (2010)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Gao, S., Volny, F.I., Wang, M.: A new framework for computing Grobner bases.
Math. Comput. 85(297), 449-465 (2016)

Gebauer, R., Moller, H.: On an installation of Buchberger’s algorithm. J. Symb.
Comput. 6(2-3), 275-286 (1988)

Gerdt, V.P.: On the relation between Pommaret and Janet bases. In: Computer
algebra in scientific computing. CASC 2000. Proceedings of the 3rd workshop,
Samarkand, Uzbekistan, October 5-9, 2000, pp. 167-181. Berlin: Springer (2000)
Gerdt, V.P.: Involutive algorithms for computing Grobner bases. In: Computa-
tional commutative and non-commutative algebraic geometry. Proceedings of the
NATO Advanced Research Workshop, Chisinau, Republic of Moldova, June 6-11,
2004, pp. 199-225. Amsterdam: IOS Press (2005)

Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput.
Simul. 45(5-6), 519-541 (1998)

Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput.
Simul. 45(5-6), 519-541 (1998)

Gerdt, V.P., Blinkov, Y.A., Yanovich, D.: Construction of Janet bases I: Monomial
bases. In: Computer algebra in scientific computing. CASC 2001. Proceedings of the
4rd workshop, Konstanz, Germany, September 22-26, 2001, pp. 233-247. Berlin:
Springer (2001)

Gerdt, V.P., Hashemi, A., M.-Alizadeh, B.: A Variant of Gerdt’s Algorithm for
Computing Involutive Bases. Bulletin of PFUR. Series Mathematics. Information
Sciences. Physics 2, 65-76 (2012)

Gerdt, V.P., Hashemi, A., M.-Alizadeh, B.: Involutive bases algorithm incorporat-
ing Fs criterion. J. Symb. Comput. 59, 1-20 (2013)

Herzog, J., Hibi, T.: Monomial ideals. London: Springer (2011)

Janet, M.: Sur les systémes d’équations aux dérivées partielles. C. R. Acad. Sci.,
Paris 170, 1101-1103 (1920)

Lazard, D.: Grobner bases, Gaussian elimination and resolution of systems of al-
gebraic equations. Computer algebra, EUROCAL ’83, Proc. Conf., London 1983,
Lect. Notes Comput. Sci. 162, 146-156. (1983)

Moller, H., Mora, T., Traverso, C.: Grébner bases computation using syzygies. In:
Proceedings of the international symposium on symbolic and algebraic computa-
tion, ISSAC’92. Berkeley, CA, USA, July 27-29, pp. 320-328 (1992)

Pommaret, J.: Systems of partial differential equations and Lie pseudogroups. With
a preface by Andre Lichnerowicz. Mathematics and its Applications. Vol. 14. New
York-London-Paris: Gordon and Breach Science Publishers. (1978)

Seiler, W.M.: A combinatorial approach to involution and §-regularity. I: Involu-
tive bases in polynomial algebras of solvable type. Appl. Algebra Eng. Commun.
Comput. 20(3-4), 207-259 (2009)

Seiler, W.M.: A combinatorial approach to involution and §-regularity. II: Struc-
ture analysis of polynomial modules with Pommaret bases. Appl. Algebra Eng.
Commun. Comput. 20(3-4), 261-338 (2009)

Seiler, W.M.: Involution. The formal theory of differential equations and its appli-
cations in computer algebra. Berlin: Springer (2010)

Thomas, J.M.: Differential systems. New York: American Mathematical Society
(AMS). IX. 118 p. (1937). (1937)

Traverso, C.: Hilbert functions and the Buchberger algorithm. J. Symb. Comput.
22(4), 355-376 (1996)

Zharkov, A., Blinkov, Y.: Involution approach to investigating polynomial systems.
Math. Comput. Simul. 42(4), 323-332 (1996)

