Abstract
In this paper, we describe improved algorithms to compute Janet and Pommaret bases. To this end, based on the method proposed by Möller et al. [20], we present a more efficient variant of Gerdt’s algorithm (than the algorithm presented in [16]) to compute minimal involutive bases. Furthermore, by using an involutive version of the Hilbert driven technique along with the new variant of Gerdt’s algorithm, we modify the algorithm given in [23] to compute a linear change of coordinates for a given homogeneous ideal so that the new ideal (after performing this change) possesses a finite Pommaret basis. All the proposed algorithms have been implemented in Maple and their efficiency is discussed via a set of benchmark polynomials.
A. Hashemi—The research of the second author was in part supported by a grant from IPM (No. 94550420).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The Maple code of the implementations of our algorithms and examples are available at http://amirhashemi.iut.ac.ir/softwares.
- 2.
See http://invo.jinr.ru.
References
Buchberger, B.: A criterion for detecting unnecessary reductions in the construction of Gröbner-bases. In: Ng, K.W. (ed.) EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72. Springer, Heidelberg (1979)
Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Univ. Innsbruck, Mathematisches Institut (Diss.), Innsbruck (1965)
Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: an algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. J. Symb. Comput. 41(3–4), 475–511 (2006). Translation from the German
Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics, 3rd edn. Springer, New York (2007)
Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185, 2nd edn. Springer, New York (2005)
Faugère, J.C.: A new efficient algorithm for computing Gröbner bases \((F_4)\). J. Pure Appl. Algebra 139(1–3), 61–88 (1999)
Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero \((F_5)\). In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC 2002, Lille, France, 07–10 July, pp. 75–83 (2002)
Gao, S., Guan, Y., Volny, F.: A new incremental algorithm for computing Groebner bases. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC 2010, Munich, Germany, 25–28 July, pp. 13–19 (2010)
Gao, S., Volny, F.I., Wang, M.: A new framework for computing Gröbner bases. Math. Comput. 85(297), 449–465 (2016)
Gebauer, R., Möller, H.: On an installation of Buchberger’s algorithm. J. Symb. Comput. 6(2–3), 275–286 (1988)
Gerdt, V.P.: On the relation between Pommaret and Janet bases. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing, pp. 167–181. Springer, Heidelberg (2000)
Gerdt, V.P.: Involutive algorithms for computing Gröbner bases. In: Computational Commutative and Non-commutative Algebraic Geometry, Proceedings of the NATO Advanced Research Workshop, Chisinau, Republic of Moldova, 6–11 June 2004, pp. 199–225. IOS Press, Amsterdam (2005)
Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput. Simul. 45(5–6), 519–541 (1998)
Gerdt, V.P., Blinkov, Y.A., Yanovich, D.: Construction of Janet bases I. monomial bases. In: Ganzha, V.G., Mayr, E.M., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing, CASC 2001, pp. 233–247. Springer, Berlin (2001)
Gerdt, V.P., Hashemi, A., M.-Alizadeh, B.: A variant of Gerdt’s algorithm for computing involutive bases. Bull. PFUR Ser. Math. Inf. Sci. Phys. 2, 65–76 (2012)
Gerdt, V.P., Hashemi, A., M.-Alizadeh, B.: Involutive bases algorithm incorporating F\(_5\) criterion. J. Symb. Comput. 59, 1–20 (2013)
Herzog, J., Hibi, T.: Monomial Ideals. Springer, London (2011)
Janet, M.: Sur les systèmes d’équations aux dérivées partielles. C. R. Acad. Sci. Paris 170, 1101–1103 (1920)
Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) Computer Algebra, EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983)
Möller, H., Mora, T., Traverso, C.: Gröbner bases computation using syzygies. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC 1992, Berkeley, CA, USA, 27–29 July, pp. 320–328 (1992)
Pommaret, J.: Systems of Partial Differential Equations and Lie Pseudogroups, vol. 14. Gordon and Breach Science Publishers, New York (1978). With a preface by Andre Lichnerowicz
Seiler, W.M.: A combinatorial approach to involution and \(\delta \)-regularity. I: involutive bases in polynomial algebras of solvable type. Appl. Algebra Eng. Commun. Comput. 20(3–4), 207–259 (2009)
Seiler, W.M.: A combinatorial approach to involution and \(\delta \)-regularity. II: structure analysis of polynomial modules with Pommaret bases. Appl. Algebra Eng. Commun. Comput. 20(3–4), 261–338 (2009)
Seiler, W.M.: Involution. The Formal Theory of Differential Equations and Its Applications in Computer Algebra. Algorithms and Computation in Mathematics, vol. 24. Springer, Berlin (2010)
Thomas, J.M.: Differential Systems, IX. 118 p. American Mathematical Society (AMS), New York (1937)
Traverso, C.: Hilbert functions and the Buchberger algorithm. J. Symb. Comput. 22(4), 355–376 (1996)
Zharkov, A., Blinkov, Y.: Involution approach to investigating polynomial systems. Math. Comput. Simul. 42(4), 323–332 (1996)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Binaei, B., Hashemi, A., Seiler, W.M. (2016). Improved Computation of Involutive Bases. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-45641-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45640-9
Online ISBN: 978-3-319-45641-6
eBook Packages: Computer ScienceComputer Science (R0)