Abstract
The fundamentals of insurance are introduced and alternatives to risk measurement are presented, illustrating how the size and likelihood of future losses may be quantified. Real data indicate that insurance companies handle many small losses, while large or extreme claims occur only very rarely. The skewness of the profit and loss probability distribution function is especially troublesome for risk quantification, but its strong asymmetry is successfully addressed with generalizations of kernel estimation. Closely connected to this approach, distortion risk measures study the expected losses of a transformation of the original data. GlueVaR risk measures are presented. The notions of subadditivity and tail-subadditivity are discussed and an overview of risk aggregation is given with some additional applications to insurance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acerbi, C., Tasche, D.: On the coherence of expected shortfall. J. Bank. Financ. 26(7), 1487–1503 (2002)
Alemany, R., Bolancé, C., Guillen, M.: A nonparametric approach to calculating value-at-risk. Insur. Math. Econ. 52(2), 255–262 (2013)
Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Financ. 9(3), 203–228 (1999)
Balbás, A., Garrido, J., Mayoral, S.: Properties of distortion risk measures. Methodol. Comput. Appl. Probab. 11(3), 385–399 (2009)
Belles-Sampera, J., Guillen, M., Santolino, M.: Beyond value-at-risk: GlueVaR distortion risk measures. Risk Anal. 34(1), 121–134 (2014)
Belles-Sampera, J., Guillen, M., Santolino, M.: GlueVaR risk measures in capital allocation applications. Insur. Math. Econ. 58, 132–137 (2014)
Belles-Sampera, J., Guillen, M., Santolino, M.: The use of flexible quantile-based measures in risk assessment. Commun. Stat. Theory Methods 45(6), 1670–1681 (2016)
Belles-Sampera, J., Guillen, M., Santolino, M.: What attitudes to risk underlie distortion risk measure choices? Insur. Math. Econ. 68, 101–109 (2016)
Belles-Sampera, J., Merigo, J.M., Guillen, M., Santolino, M.: The connection between distortion risk measures and ordered weighted averaging operators. Insur. Math. Econ. 52(2), 411–420 (2013)
Bolancé, C., Guillen, M., Nielsen, J.P.: Kernel density estimation of actuarial loss functions. Insur. Math. Econ. 32(1), 19–36 (2003)
Bolancé, C., Guillen, M., Nielsen, J.P.: Inverse Beta transformation in kernel density estimation. Stat. Probab. Lett. 78(13), 1757–1764 (2008)
Bolancé, C., Guillén, M., Nielsen, J.P.: Transformation kernel estimation of insurance claim cost distributions. In: Corazza, M., Pizzi, C. (eds.) Mathematical and Statistical Methods for Actuarial Sciences and Finance, pp. 43–51. Springer, Milan (2010)
Bolancé, C., Guillen, M., Pelican, E., Vernic, R.: Skewed bivariate models and nonparametric estimation for the CTE risk measure. Insur. Math. Econ. 43(3), 386–393 (2008)
Buch-Larsen, T., Nielsen, J.P., Guillen, M., Bolance, C.: Kernel density estimation for heavy-tailed distributions using the Champernowne transformation. Statistics 39(6), 503–516 (2005)
Choquet, G.: Theory of capacities. Ann. de l’Inst. Fourier 5, 131–295 (1954). Institut Fourier
Denneberg, D.: Non-additive Measure and Integral, vol. 27. Springer Science and Business Media, Netherlands (1994)
Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R.: Actuarial Theory for Dependent Risks: Measures, Orders and Models. Wiley, Hoboken (2006)
Dhaene, J., Laeven, R.J., Vanduffel, S., Darkiewicz, G., Goovaerts, M.J.: Can a coherent risk measure be too subadditive? J. Risk Insur. 75(2), 365–386 (2008)
Guelman, L., Guillen, M., PĂ©rez-MarĂn, A.M.: A decision support framework to implement optimal personalized marketing interventions. Decis. Support Syst. 72, 24–32 (2015)
Guillen, M.: Riesgo y seguro en economia. Discurso de ingreso en la Real Academia de Ciencias Economicas y Financieras. Barcelona (2015)
Guillen, M., Prieto, F., Sarabia, J.M.: Modelling losses and locating the tail with the Pareto Positive Stable distribution. Insur. Math. Econ. 49(3), 454–461 (2011)
Guillen, M., Sarabia, J.M., Prieto, F.: Simple risk measure calculations for sums of positive random variables. Insur. Math. Econ. 53(1), 273–280 (2013)
Jorion, P.: Value at Risk: The New Benchmark for Managing Financial Risk, vol. 3. McGraw-Hill, New York (2007)
MacKenzie, C.A.: Summarizing risk using risk measures and risk indices. Risk Anal. 34(12), 2143–2162 (2014)
McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press, Princeton (2015)
Szeg, G.: Measures of risk. J. Bank. Financ. 26(7), 1253–1272 (2002)
Tsanakas, A., Desli, E.: Measurement and pricing of risk in insurance markets. Risk Anal. 25(6), 1653–1668 (2005)
Wand, M.P., Marron, J.S., Ruppert, D.: Transformations in density estimation. J. Am. Stat. Assoc. 86(414), 343–353 (1991)
Wang, S.: Insurance pricing and increased limits ratemaking by proportional hazards transforms. Insur. Math. Econ. 17(1), 43–54 (1995)
Wang, S.: Premium calculation by transforming the layer premium density. Astin Bull. 26(01), 71–92 (1996)
Yaari, M.E.: The dual theory of choice under risk. Econom. J. Econom. Soc. 55, 95–115 (1987)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Guillen, M., Bolancé, C., Santolino, M. (2016). Fundamentals of Risk Measurement and Aggregation for Insurance Applications. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Yañez, C. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2016. Lecture Notes in Computer Science(), vol 9880. Springer, Cham. https://doi.org/10.1007/978-3-319-45656-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-45656-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45655-3
Online ISBN: 978-3-319-45656-0
eBook Packages: Computer ScienceComputer Science (R0)