Abstract
To cope with the ever-increasing volume of malware samples, automated program analysis techniques are inevitable. Malware sandboxes in particular have become the de facto standard to extract a program’s behavior. However, the strong need to automate program analysis also bears the risk that anyone that can submit programs to learn and leak the characteristics of a particular sandbox.
We introduce SandPrint, a program that measures and leaks characteristics of Windows-targeted sandboxes. We submit our tool to 20 malware analysis services and collect 2666 analysis reports that cluster to 76 sandboxes. We then systemically assess whether an attacker can possibly find a subset of characteristics that are inherent to all sandboxes, and not just characteristic of a single sandbox. In fact, using supervised learning techniques, we show that adversaries can automatically generate a classifier that can reliably tell a sandbox and a real system apart. Finally, we show that we can use similar techniques to stealthily detect commercial malware security appliances of three popular vendors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We omit the vendor names not to pinpoint to weaknesses of individual appliances.
References
Amnpardaz Sandbox - File Analyzer. http://jevereg.amnpardaz.com/
Anubis: Malware Analysis for Unknown Binaries. https://anubis.iseclab.org/
Bkav - Scan virus online. http://quetvirus.vn/default.aspx?lang=en
bochs: The Open Source IA-32 Emulation Project. http://bochs.sourceforge.net
Dr. Web Online Check. http://online.drweb.com/?lng=en
FortiGuard Center. Online Virus Scanner. http://www.fortiguard.com/virusscanner
Gary‘s Hood. Online Virus Scanner. http://www.garyshood.com/virus/
Malwr - Malware Analysis by Cuckoo Sandbox. https://malwr.com/
NVMTrace: Proof-of-concept Automated Baremetal Malware Analysis Framework. https://code.google.com/p/nvmtrace/
Oracle VM VirtualBox. https://www.virtualbox.org
#totalhash. https://totalhash.cymru.com/upload/
Virusblokada. http://anti-virus.by/en/index.shtml
VirusTotal - Free Online Virus, Malware and URL Scanner. https://www.virustotal.com/en/
VMware. http://www.vmware.com/
Bayer, U., Milani Comparetti, P., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable, behavior-based malware clustering. In: Network and Distributed System Security Symposium (NDSS) (2009)
Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of the Annual Conference on USENIX Annual Technical Conference, ATEC 2005 (2005)
Brengel, M., Backes, M., Rossow, C.: Detecting hardware-assisted virtualization. In: Caballero, J., Zurutuza, U., Rodríguez, R.J. (eds.) DIMVA 2016. LNCS, vol. 9721, pp. 207–227. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40667-1_11
Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring pay-per-install: the commoditization of malware distribution. In: USENIX Security (2011)
Comodo. Comodo Instant Malware Analysis. http://camas.comodo.com/
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)
DEXLabs. Detecting Android Sandboxes (2012). http://www.dexlabs.org/blog/btdetect
Dinaburg, A., Royal, P., Sharif, M., Ether, L.W.: Malware analysis via hardware virtualization extensions. In: Proceedings of the 15th ACM Conference on Computer and Communications Security, CCS 2008 (2008)
Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic malware-analysis techniques and tools. ACM Comput. Surv. 44, 2 (2008)
F-Secure. Sample Analysis System. https://analysis.f-secure.com/portal/login.html
Freiling, F.C., Holz, T., Wicherski, G.: Botnet tracking: exploring a root-cause methodology to prevent distributed denial-of-service attacks. In: di Vimercati, S.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 319–335. Springer, Heidelberg (2005)
Jing, Y., Zhao, Z., Ahn, G.-J., Hu, H.: Morpheus: automatically generating heuristics to detect android emulators. In: Proceedings of the 30th Annual Computer Security Applications Conference, ACSAC 2014 (2014)
Jotti. Jotti’s Malware Scan. http://virusscan.jotti.org/en
Jung, P.: Bypassing Sandboxes for Fun. https://www.botconf.eu/wp-content/uploads/2014/12/2014-2.7-Bypassing-Sandboxes-for-Fun.pdf
Kirat, D., Vigna, G., Kruegel, C.: Barecloud: bare-metal analysis-based evasive malware detection. In: Proceedings of the 23rd USENIX Conference on Security Symposium, SEC 2014 (2014)
Kirati, D., Vigna, G., Kruegel, C.: BareBox: efficient malware analysis on bare-metal. In: Proceedings of the 27th Annual Computer Security Applications Conference, ACSAC 2011 (2011)
Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: AccessMiner: using system-centric models for malware protection. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010 (2010)
Maier, D., Müller, T., Protsenko, M.: Divide-and-Conquer: why android malware cannot be stopped. In: Proceedings of the 2014 Ninth International Conference on Availability, Reliability and Security, ARES 2014 (2014)
Martignoni, L., Paleari, R., Roglia, G.F., Bruschi, D.: Testing CPU emulators. In: Proceedings of the Eighteenth International Symposium on Software Testing and Analysis, ISSTA 2009 (2009)
Microsoft. Submit a sample - Microsoft Malware Protection Center. https://www.microsoft.com/security/portal/submission/submit.aspx
Neugschwandtner, M., Comparetti, P. M., Platzer, C.: Detecting malware’s failover C&C strategies with squeeze. In: Proceedings of the 27th Annual Computer Security Applications Conference, ACSAC 2011 (2011)
Neuner, S., van der Veen, V., Lindorfer, M., Huber, M., Merzdovnik, G., Mulazzani, M., Weippl, E.: Enter Sandbox: Android Sandbox Comparison (2015). http://arxiv.org/ftp/arxiv/papers/1410/1410.7749.pdf
OPSWAT. Metascan Online: Free File Scanning with Multiple Antivirus Engines. https://www.metascan-online.com/#!/scan-file
Pa, Y.M.P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T., Rossow, C.: IoTPOT: analysing the rise of IoT compromises. In: Proceedings of the 9th USENIX Workshop on Offensive Technologies, WOOT (2015)
Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.A.: Fistful of red-pills: how to automatically generate procedures to detect CPU emulators. In: Proceedings of the 3rd USENIX Conference on Offensive Technologies, WOOT 2009 (2009)
Pék, G., Bencsáth, B., Buttyán, L.: nEther: in-guest detection of out-of-the-guest malware analyzers. In: Proceedings of the Fourth European Workshop on System Security, EUROSEC 2011 (2011)
Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Rage against the virtual machine: hindering dynamic analysis of android malware. In: Proceedings of the Seventh European Workshop on System Security, EuroSec 2014 (2014)
Raffetseder, T., Kruegel, C., Kirda, E.: Detecting system emulators. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 1–18. Springer, Heidelberg (2007)
Rieck, K., Schwenk, G., Limmer, T., Holz, T., Laskov, P.: Botzilla: detecting the phoning home of malicious software. In: Proceedings of the 2010 ACM Symposium on Applied Computing (ACSAC 2010) (2010)
Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behavior using machine learning. J. Comput. Secur. 19(4), 639–668 (2009)
Rossow, C., Dietrich, C., Bos, H.: Large-scale analysis of malware downloaders. In: Flegel, U., Markatos, E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 42–61. Springer, Heidelberg (2013)
Rutkowska, J.: Red Pill... Or How To Detect VMM Using (Almost) One CPU Instruction (2004). http://www.securiteam.com/securityreviews/6Z00H20BQS.html
Payload Security: Free Automated Malware Analysis Service. https://www.hyblid-analysis.com/
Payload Security: Blog article (2015). http://www.pandasecurity.com/mediacenter/press-releases/pandalabs-neutralized-75-million-new-malware-samples-2014-twice-many-2013/
ThreatTrack Security. Free Online Malware Analysis. http://www.threattracksecurity.com/resources/sandbox-malware-analysis.aspx
Symantec. Internet Security Threat Report 04/2015 (2015). http://www.symantec.com/de/de/security_response/publications/threatreport.jsp
ThreatExpert. http://www.threatexpert.com/submit.aspx
Vasudevan, A., Yerraballi, R.: Cobra: fine-grained malware analysis using stealth localized-executions. In: Proceedings of the 2006 IEEE Symposium on Security and Privacy, S&P 2006 (2006)
Vidas, T., Christin, N.: Evading android runtime analysis via sandbox detection. In: Proceedings of the 9th ACM Symposium on Information, Computer and Communications Security, ASIA CCS 2014 (2014)
VirSCAN.org. Free Multi-Engine Online Virus Scanner. http://www.virscan.org/
Yoshioka, K., Hosobuchi, Y., Orii, T., Matsumoto, T.: Your sandbox is blinded: impact of decoy injection to public malware analysis systems. J. Inf. Process. 52, 3 (2011)
Acknowledgements
We would like to thank the anonymous reviewers for their valuable comments. Special thanks goes to our shepherd Michael Bailey, who supported us during the process of finalizing the paper. This work was supported by the MEXT Program for Promoting Reform of National Universities and by the German Federal Ministry of Education and Research (BMBF) through funding for the Center for IT-Security, Privacy and Accountability (CISPA) and for the BMBF project 13N13250.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
See Fig. 3.
Mapping between submitted SandPrint instances and sandboxes. The non-circle shapes indicate constant and exclusive use of a sandbox by a particular service and thus are inferred as being a sandbox attached to the service. A cross indicates that the mapping is confirmed by mapping the SandPrint report to the dynamic analysis report provided by the service.
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Yokoyama, A. et al. (2016). SandPrint: Fingerprinting Malware Sandboxes to Provide Intelligence for Sandbox Evasion. In: Monrose, F., Dacier, M., Blanc, G., Garcia-Alfaro, J. (eds) Research in Attacks, Intrusions, and Defenses. RAID 2016. Lecture Notes in Computer Science(), vol 9854. Springer, Cham. https://doi.org/10.1007/978-3-319-45719-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-45719-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45718-5
Online ISBN: 978-3-319-45719-2
eBook Packages: Computer ScienceComputer Science (R0)