Skip to main content

Mining Network Hotspots with Holes: A Summary of Results

  • Conference paper
  • First Online:
Geographic Information Science (GIScience 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9927))

Included in the following conference series:

Abstract

Given a spatial network and a collection of activities (e.g. crime locations), the problem of Mining Network Hotspots with Holes (MNHH) finds network hotspots with doughnut shaped spatial footprint, where the concentration of activities is unusually high (e.g. statistically significant). MNHH is important for societal applications such as criminology, where it may focus the efforts of officials to identify a crime source. MNHH is challenging because of the large number of candidates and the high computational cost of statistical significance test. Previous work focused either on geometry based hotspots (e.g. circular, ring-shaped) on Euclidean space or connected subgraphs (e.g. shortest path), limiting the ability to detect statistically significant hotspots with holes on a spatial network. This paper proposes a novel Network Hotspot with Hole Generator (NHHG) algorithm to detect network hotspots with holes. The proposed algorithm features refinements that improve the performance of a naïve approach. Case studies on real crime datasets confirm the superiority of NHHG over previous approaches. Experimental results on real data show that the proposed approach yields substantial computational savings without reducing result quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fitterer, J., Nelson, T., Nathoo, F.: Predictive crime mapping. Police Pract. Res. 16(2), 121–135 (2015)

    Article  Google Scholar 

  2. Brantingham, P., et al.: Environmental Criminology. SAGE, Beverly Hills (1981)

    Google Scholar 

  3. Kulldorff, M.: SaTScan user guide for version 9.0 (2011)

    Google Scholar 

  4. Eftelioglu, E., Tang, X., Shekhar, S.: Geographically robust hotspot detection: a summary of results. In: ICDM International Workshop on Spatial and Spatiotemporal Data Mining (SSTDM) (2015)

    Google Scholar 

  5. Kulldorff, M., et al.: An elliptic spatial scan statistic. Stat. Med. 25(22), 3929–3943 (2006)

    Article  MathSciNet  Google Scholar 

  6. Tang, X., et al.: Elliptical hotspot detection: a summary of results. In: ACM SIGSPATIAL Workshops (2015)

    Google Scholar 

  7. Neill, D.B., et al.: A fast multi-resolution method for detection of significant spatial disease clusters. In: Advances in Neural Information Processing Systems (2003)

    Google Scholar 

  8. Eftelioglu, E., et al.: Ring-shaped hotspot detection: a summary of results. In: IEEE International Conference on Data Mining, pp. 815–820 (2014)

    Google Scholar 

  9. Grubesic, T.H., Wei, R., Murray, A.T.: Spatial clustering overview and comparison: accuracy, sensitivity, and computational expense. Ann. Assoc. Am. Geogr. 104(6), 1134–1156 (2014)

    Article  Google Scholar 

  10. Beavon, D.J., Brantingham, P.L., Brantingham, P.J.: The influence of street networks on the patterning of property offenses. Crime Prev. Stud. 2, 115–148 (1994)

    Google Scholar 

  11. Law, J., Quick, M., Chan, P.: Bayesian spatio-temporal modeling for analysing local patterns of crime over time at the small-area level. J. Quant. Criminol. 30(1), 57–78 (2014)

    Article  Google Scholar 

  12. Okabe, A., Okunuki, K.-I., Shiode, S.: The SANET toolbox: new methods for network spatial analysis. Trans. GIS 10(4), 535–550 (2006)

    Article  Google Scholar 

  13. Okabe, A., Sugihara, K.: Spatial Analysis Along Networks: Statistical and Computational Methods. Wiley, New York (2012)

    Book  MATH  Google Scholar 

  14. Shiode, S., Shiode, N.: Network-based space-time search-window technique for hotspot detection of street-level crime incidents. Int. J. Geogr. Inf. Sci. 27(5), 866–882 (2013)

    Article  Google Scholar 

  15. Dev, O., et al.: Significant route discovery: a summary of results. In: Duckham, M., Pebesma, E., Stewart, K., Frank, A.U. (eds.) GIScience 2014. LNCS, vol. 8728, pp. 284–300. Springer, Heidelberg (2014)

    Google Scholar 

  16. Shi, L., Janeja, V.P.: Anomalous window discovery for linear intersecting paths. IEEE Trans. Knowl. Data Eng. 23(12), 1857–1871 (2011)

    Article  Google Scholar 

  17. Costa, M.A., Assunção, R.M., Kulldorff, M.: Constrained spanning tree algorithms for irregularly-shaped spatial clustering. Comput. Stat. Data Anal. 56(6), 1771–1783 (2012)

    Article  MathSciNet  Google Scholar 

  18. Levine, N.: Crime mapping and the crimestat program. Geogr. Anal. 38(1), 41–56 (2006)

    Article  Google Scholar 

  19. Kuratowski, K.: Topology, vol. 1. Elsevier, Amsterdam (2014)

    Google Scholar 

  20. Kulldorff, M.: A spatial scan statistic. Commun. Stat.-Theor. Methods 26, 1481–1496 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. MacKay, D.J.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  22. Us census bureau tiger/line shapefiles. http://www.census.gov/geo/maps-data/data/tiger-line.html. Accessed 9 Dec 2015

  23. City of Chicago data portal. https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2. Accessed 01 Dec 2014

  24. City of Oakland data portal. https://data.oaklandnet.com. Accessed 1 May 2016

  25. Ester, M., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise, pp. 226–231. AAAI Press (1996)

    Google Scholar 

  26. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a K-means clustering algorithm. Appl. Stat. 28, 100–108 (1979)

    Article  MATH  Google Scholar 

  27. Oliver, D., et al.: A k-main routes approach to spatial network activity summarization. IEEE Trans. Knowl. Data Eng. 26, 1464–1478 (2014)

    Article  Google Scholar 

  28. Guo, D.: Local entropy map: a nonparametric approach to detecting spatially varying multivariate relationships. Int. J. Geogr. Inf. Sci. 24(9), 1367–1389 (2010)

    Article  Google Scholar 

  29. Wolfe, M.K., Mennis, J.: Does vegetation encourage or suppress urban crime? Evidence from Philadelphia, PA. Landscape and Urban Planning 108, 112–122 (2012)

    Article  Google Scholar 

  30. Hirschfield, A., Birkin, M., Brunsdon, C., Malleson, N., Newton, A.: How places influence crime: the impact of surrounding areas on neighbourhood burglary rates in a British city. Urban Stud. 51(5), 1057–1072 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grants No. 1029711, IIS-1320580, 0940818 and IIS-1218168, the USDOD under Grants No. HM1582-08-1-0017. We would like to thank Kim Koffolt and University of Minnesota Spatial Computing Research Group for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Eftelioglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Eftelioglu, E., Li, Y., Tang, X., Shekhar, S., Kang, J.M., Farah, C. (2016). Mining Network Hotspots with Holes: A Summary of Results. In: Miller, J., O'Sullivan, D., Wiegand, N. (eds) Geographic Information Science. GIScience 2016. Lecture Notes in Computer Science(), vol 9927. Springer, Cham. https://doi.org/10.1007/978-3-319-45738-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45738-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45737-6

  • Online ISBN: 978-3-319-45738-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics