Abstract
Given a graph and a set of spatial events, the goal of Distance-Constrained k Spatial Sub-Networks (DCSSN) problem is to find k sub-networks that meet a distance constraint and maximize the number of spatial events covered by the sub-networks. The DCSSN problem is important for many societal applications, such as police patrol assignment and emergency response assignment. The problem is NP-hard; it is computationally challenging because of the large size of the transportation network and the distance constraint. This paper proposes a novel approach for finding k sub-networks that maximize the coverage of spatial events under the distance constraint. Experiments and a case study using Chicago crime datasets demonstrate that the proposed algorithm outperforms baseline approaches and reduces the computational cost to create a DCSSN.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, P.K., Procopiuc, C.M.: Exact and approximation algorithms for clustering. Algorithmica 33(2), 201–226 (2002)
Aggarwal, C.C., et al.: Data Clustering: Algorithms and Applications. CRC Press, Boca Raton (2013)
Ahuja, R., Magnanti, T., Orlin, J., Weihe, K.: Network Flows: Theory, Algorithms and Applications. Prentice-Hall, Englewood Cliffs (1993)
Barthélemy, M.: Spatial networks. Phys. Rep. 499(1), 1–101 (2011)
Black, W.R., Thomas, I.: Accidents on Belgium’s motorways: a network autocorrelation analysis. J. Transp. Geogr. 6(1), 23–31 (1998)
Buchin, K., et al.: Detecting hotspots in geographic networks. In: Sester, M., Bernard, L., Paelke, V. (eds.) Advances in GIScience. LNGC, pp. 217–231. Springer, Berlin (2009)
Carmi, P., Katz, M.J., Lev-Tov, N.: Covering points by unit disks of fixed location. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 644–655. Springer, Heidelberg (2007)
Chazelle, B.M., et al.: On a circle placement problem. Computing 36(1–2), 1–16 (1986)
Chen, Z., et al.: Discovering popular routes from trajectories. In: 2011 IEEE 27th International Conference on Data Engineering, pp. 900–911. IEEE (2011)
Chun, Y.: Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J. Geogr. Syst. 10(4), 317–344 (2008)
City of Chicago Data Potal, Crimes - 2001 to Present. https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2. Accessed Dec 2015
Current, J., Pirkul, H., Rolland, E.: Efficient algorithms for solving the shortest covering path problem. Transp. Sci. 28(4), 317–327 (1994)
Current, J., et al.: The shortest covering path problem-an application of locational constraints to network design. J. Reg. Sci. 24(2), 161–183 (1984)
Current, J.R., Schilling, D.A.: The median tour and maximal covering tour problems: formulations and heuristics. Eur. J. Oper. Res. 73(1), 114–126 (1994)
Current, J.R., Velle, C.R., Cohon, J.L.: The maximum covering/shortest path problem: a multiobjective network design and routing formulation. Eur. J. Oper. Res. 21(2), 189–199 (1985)
Downs, J., Horner, M.: Network-based kernel density estimation for home range analysis. In: Proceedings of 9th International Conference on Geocomputation, Maynooth, Ireland (2007)
Ester, M., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)
Fotakis, D., et al.: Space efficient hash tables with worst case constant access time. Theor. Comput. Syst. 38(2), 229–248 (2005)
Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. J. Algorithms 53(1), 55–84 (2004)
Ghasemalizadeh, H., Razzazi, M.: An improved approximation algorithm for the most points covering problem. Theor. Comput. Syst. 50(3), 545–558 (2012)
Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293–306 (1985)
Han, J., et al.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011)
Hifi, M., M’hallah, R.: A literature review on circle and sphere packing problems: models and methodologies. Adv. Oper. Res. (2009)
Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Math. Oper. Res. 10(2), 180–184 (1985)
Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. J. ACM (JACM) 33(3), 533–550 (1986)
LAPD Crime and Collision Raw Data for 2015. https://data.lacity.org/A-Safe-City/LAPD-Crime-and-Collision-Raw-Data-for-2015/ttiz-7an8. Accessed Dec 2015
Li, X., Han, J., Lee, J.-G., Gonzalez, H.: Traffic density-based discovery of hot routes in road networks. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 441–459. Springer, Heidelberg (2007)
Marchette, D.: Scan statistics on graphs. Wiley Interdiscip. Rev.: Comput. Stat. 4(5), 466–473 (2012)
Murawski, L., Church, R.L.: Improving accessibility to rural health services: the maximal covering network improvement problem. Soc.-Econ. Plan. Sci. 43(2), 102–110 (2009)
Okabe, A., Sugihara, K.: Spatial Analysis Along Networks: Statistical and Computational Methods. Wiley, Hoboken (2012)
Okabe, A., Yamada, I.: The k-function method on a network and its computational implementation. Geogr. Anal. 33(3), 271–290 (2001)
Oliver, D., et al.: A k-main routes approach to spatial network activity summarization. IEEE Trans. Knowl. Data Eng. 26(6), 1464–1478 (2014)
OpenStreetMap. http://www.openstreetmap.org/. Accessed Sept 2015
O’Sullivan, D., et al.: Geographic Information Analysis. Wiley, Hoboken (2014)
Priebe, C.E., et al.: Scan statistics on enron graphs. Comput. Math. Organ. Theor. 11(3), 229–247 (2005)
Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann, San Francisco (2006)
Shekhar, S., Chawla, S.: Spatial Databases: A Tour. Prentice Hall, Upper Saddle River (2003)
Shiode, S., Shiode, N.: Detection of multi-scale clusters in network space. Int. J. Geogr. Inf. Sci. 23(1), 75–92 (2009)
Sørensen, T.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons. Biologiske Skrifter 5, 1–34 (1948)
Spooner, P.G., et al.: Spatial analysis of roadside acacia populations on a road network using the network k-function. Landsc. Ecol. 19(5), 491–499 (2004)
Tan, P., et al.: Introduction to Data Mining. Addison-Wesley, Boston (2005)
Yamada, I., Thill, J.C.: Local indicators of network-constrained clusters in spatial point patterns. Geogr. Anal. 39(3), 268–292 (2007)
Yang, K., et al.: Capacity-constrained network-Voronoi diagram. IEEE Trans. Knowl. Data Eng. 27(11), 2919–2932 (2015)
Acknowledgments
We would like to thank FAU under start-up funds for student support, equipment and travel.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Yang, K. (2016). Distance-Constrained k Spatial Sub-Networks: A Summary of Results. In: Miller, J., O'Sullivan, D., Wiegand, N. (eds) Geographic Information Science. GIScience 2016. Lecture Notes in Computer Science(), vol 9927. Springer, Cham. https://doi.org/10.1007/978-3-319-45738-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-45738-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45737-6
Online ISBN: 978-3-319-45738-3
eBook Packages: Computer ScienceComputer Science (R0)