Skip to main content

An Online Approach for Direction-Based Trajectory Compression with Error Bound Guarantee

  • Conference paper
  • First Online:
Web Technologies and Applications (APWeb 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9931))

Included in the following conference series:

Abstract

With the increasing usage of GPS-enabled devices which can record users’ travel experiences, moving object trajectories are collected in many applications. Raw trajectory data can be of large volume but storage is limited, and direction-based compression to preserve the skeleton of a trajectory became popular recently. In addition, real-time applications and constrained resources often require online processing of incoming data instantaneously. To address this challenge, in this paper we first investigate two approaches extended from Douglas-Peucker and Greedy Deviation algorithms respectively, which are two most popular algorithms for trajectory compression. To further improve the online computational efficiency, we propose a faster approximate algorithm with error bound guarantee named Angular-Deviation. Experimental results demonstrate it can achieve low running time to suit the most constrained computation environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can. Cartographer 10(2), 112–122 (1973)

    Article  Google Scholar 

  2. Heckbert, P.S., Garland, M.: Survey of polygonal surface simplification algorithms. Technical report, Carnegie Mellon University (1997)

    Google Scholar 

  3. Jiang, W., Zhu, J., Xu, J., Li, Z., Zhao, P., Zhao, L.: HV: a feature based method for trajectory dataset profiling. In: Cellary, W., Wang, D., Wang, H., Chen, S.-C., Li, T., Zhang, Y. (eds.) WISE 2015. LNCS, vol. 9418, pp. 46–60. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26190-4_4

    Chapter  Google Scholar 

  4. Keogh, E.J., Chu, S., Hart, D.M., Pazzani, M.J.: An online algorithm for segmenting time series. In: ICDM, pp. 289–296 (2001)

    Google Scholar 

  5. Kolesnikov, A.: Efficient online algorithms for the polygonal approximation of trajectory data. In: MDM, pp. 49–57 (2011)

    Google Scholar 

  6. Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Jurdak, R.: Bounded quadrant system: error-bounded trajectory compression on the go. In: ICDE, pp. 987–998 (2015)

    Google Scholar 

  7. Long, C., Wong, R.C., Jagadish, H.V.: Direction-preserving trajectory simplification. PVLDB 6(10), 949–960 (2013)

    Google Scholar 

  8. Long, C., Wong, R.C., Jagadish, H.V.: Trajectory simplification: on minimizing the direction-based error. PVLDB 8(1), 49–60 (2014)

    Google Scholar 

  9. Meratnia, N., Park, Y.-Y.: Spatiotemporal compression techniques for moving point objects. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 765–782. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Muckell, J., Hwang, J., Patil, V., Lawson, C.T., Ping, F., Ravi, S.S.: SQUISH: an online approach for GPS trajectory compression. In: COM.Geo, pp. 13:1–13:8 (2011)

    Google Scholar 

  11. Muckell, J., Olsen, P.W., Hwang, J., Lawson, C.T., Ravi, S.S.: Compression of trajectory data: a comprehensive evaluation and new approach. GeoInformatica 18(3), 435–460 (2014)

    Article  Google Scholar 

  12. Potamias, M., Patroumpas, K., Sellis, T.K.: Sampling trajectory streams with spatiotemporal criteria. In: SSDBM, pp. 275–284 (2006)

    Google Scholar 

  13. Yang, Y., Ma, Z., Yang, Y., Nie, F., Shen, H.T.: Multitask spectral clustering by exploring intertask correlation. IEEE Trans. Cybern. 45(5), 1069–1080 (2015)

    Article  Google Scholar 

  14. Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: driving directions based on taxi trajectories. In: ACM-GIS, pp. 99–108 (2010)

    Google Scholar 

Download references

Acknowledgments

This work is support in part by the Fundamental Research Funds for the Central Universities (No. ZYGX2015J058, No. ZYGX2015J055 and No. ZYGX2014Z007), and the National Nature Science Foundation of China (No. 61572108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ke, B., Shao, J., Zhang, Y., Zhang, D., Yang, Y. (2016). An Online Approach for Direction-Based Trajectory Compression with Error Bound Guarantee. In: Li, F., Shim, K., Zheng, K., Liu, G. (eds) Web Technologies and Applications. APWeb 2016. Lecture Notes in Computer Science(), vol 9931. Springer, Cham. https://doi.org/10.1007/978-3-319-45814-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45814-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45813-7

  • Online ISBN: 978-3-319-45814-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics