Abstract
Structure of a grammar can influence how well a Grammar-Based Genetic Programming system solves a given problem but it is not obvious to design the structure of a grammar, especially when the problem is large. In this paper, our proposed Bayesian Grammar-Based Genetic Programming with Hierarchical Learning (BGBGP-HL) examines the grammar and builds new rules on the existing grammar structure during evolution. Once our system successfully finds the good solution(s), the adapted grammar will provide a grammar-based probabilistic model to the generation process of optimal solution(s). Moreover, our system can automatically discover new hierarchical knowledge (i.e. how the rules are structurally combined) which composes of multiple production rules in the original grammar. In the case study using deceptive royal tree problem, our evaluation shows that BGBGP-HL achieves the best performance among the competitors while it is capable of composing hierarchical knowledge. Compared to other algorithms, search performance of BGBGP-HL is shown to be more robust against deceptiveness and complexity of the problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Booth, T.L., Thompson, R.A.: Applying probability measures to abstract languages. IEEE Trans. Comput. 100(5), 442–450 (1973)
Cooper, G.F., Herskovits, E.: A bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309–347 (1992)
Hasegawa, Y., Iba, H.: Estimation of bayesian network for program generation. In: Proceedings of 3rd Asian-Pacific Workshop on Genetic Programming, p. 35 (2006)
Hasegawa, Y., Iba, H.: A bayesian network approach to program generation. IEEE Trans. Evol. Comput. 12(6), 750–764 (2008)
Hasegawa, Y., Iba, H.: Latent variable model for estimation of distribution algorithm based on a probabilistic context-free grammar. IEEE Trans. Evol. Comput. 13(4), 858–878 (2009)
Hasegawa, Y., Ventura, S.: Programming with annotated grammar estimation. In: Genetic Programming-New Approaches and Successful Applications, pp. 49–74 (2012)
Kim, K., Shan, Y., Nguyen, X.H., McKay, R.I.: Probabilistic model building in genetic programming: a critical review. Genet. Program Evolvable Mach. 15(2), 115–167 (2014)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT press, Cambridge (1992)
Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based genetic programming: a survey. Genet. Program Evolvable Mach. 11(3–4), 365–396 (2010)
O’Neill, M., Brabazon, A.: Grammatical differential evolution. In: IC-AI, pp. 231–236 (2006)
O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)
O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language, vol. 4. Springer, New York (2003)
O’Neill, M., Ryan, C.: Grammatical evolution by grammatical evolution: the evolution of grammar and genetic code. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 138–149. Springer, Heidelberg (2004)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Elsevier, Amsterdam (2014)
Regolin, E.N., Pozo, A.T.R.: Bayesian automatic programming. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 38–49. Springer, Heidelberg (2005)
Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: Grammatical evolution hyper-heuristic for combinatorial optimization problems. IEEE Trans. Evol. Comput. 17(6), 840–861 (2013)
Salustowicz, R., Schmidhuber, J.: Probabilistic incremental program evolution. Evol. Comput. 5(2), 123–141 (1997)
Sastry, K., Goldberg, D.E.: Probabilistic model building and competent genetic programming. In: Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice, vol. 6, pp. 205–220. Springer, New York (2003)
Tanev, I.: Incorporating learning probabilistic context-sensitive grammar in genetic programming for efficient evolution and adaptation of snakebot. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 155–166. Springer, Heidelberg (2005)
Whigham, P.A.: Grammatically-based genetic programming. In: Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, vol. 16, pp. 33–41 (1995)
Wong, M.L., Leung, K.S.: Applying logic grammars to induce sub-functions in genetic programming. In: IEEE International Conference on Evolutionary Computation, vol. 2, pp. 737–740. IEEE (1995)
Wong, P.K., Lo, L.Y., Wong, M.L., Leung, K.S.: Grammar-based genetic programming with bayesian network. In: 2014 IEEE Congress on Evolutionary Computation, pp. 739–746. IEEE (2014)
Wong, P.K., Lo, L.Y., Wong, M.L., Leung, K.S.: Grammar-based genetic programming with dependence learning and bayesian network classifier. In: Proceedings of GECCO 2014, pp. 959–966. ACM (2014)
Yanase, T., Hasegawa, Y., Iba, H.: Binary encoding for prototype tree of probabilistic model building GP. In: Proceedings of GECCO 2009, pp. 1147–1154 (2009)
Acknowledgment
This research has been supported by General Research Fund LU310111 from the Research Grant Council of the Hong Kong Special Administrative Region.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Wong, PK., Wong, ML., Leung, KS. (2016). Hierarchical Knowledge in Self-Improving Grammar-Based Genetic Programming. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-45823-6_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45822-9
Online ISBN: 978-3-319-45823-6
eBook Packages: Computer ScienceComputer Science (R0)