Abstract
Designing portfolio adaptive selection strategies is a promising approach to gain in generality when tackling a given optimization problem. However, we still lack much understanding of what makes a strategy effective, even if different benchmarks have been already designed for these issues. In this paper, we propose a new model based on fitness cloud allowing us to provide theoretical and empirical insights on when an on-line adaptive strategy can be beneficial to the search. In particular, we investigate the relative performance and behavior of two representative and commonly used selection strategies with respect to static (off-line) and purely random approaches, in a simple, yet sound realistic, setting of the proposed model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baudiš, P., Pošík, P.: Online black-box algorithm portfolios for continuous optimization. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 40–49. Springer, Heidelberg (2014)
DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection with dynamic multi-armed bandits. In: GECCO 2008, p. 913 (2008)
Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in evolutionary algorithms. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms. Studies in Computational Intelligence, vol. 54, pp. 19–46. Springer, Heidelberg (2007)
Fialho, A., Da Costa, L., Schoenauer, M., Sebag, M.: Analyzing bandit-based adaptive operator selection mechanisms. AMAI 60, 25–64 (2010)
García-Valdez, M., Trujillo, L., Merelo-Guérvos, J.J., Fernández-de-Vega, F.: Randomized parameter settings for heterogeneous workers in a pool-based evolutionary algorithm. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 702–710. Springer, Heidelberg (2014)
Goëffon, A., Lardeux, F., Saubion, F.: Simulating non stationary operators in search algorithms. Appl. Soft Comput. 38, 257–268 (2016)
Jankee, C., Verel, S., Derbel, B., Fonlupt, C.: Distributed adaptive metaheuristic selection: comparisons of selection strategies. In: Bonnevay, S., et al. (eds.) EA 2015. LNCS, vol. 9554, pp. 83–96. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31471-6_7
Lehre, P.K., Witt, C.: General drift analysis with tail bounds. Technical report (2013). arXiv:1307.2559
Tanabe, R., Fukunaga, A.: Evaluation of a randomized parameter setting strategy for island-model evolutionary algorithms. In: CEC 2013, pp. 1263–1270 (2013)
Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In: GECCO 2005, pp. 1539–1546 (2005)
Thierens, D.: Adaptive strategies for operator allocation. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms. Studies in Computational Intelligence, vol. 54, pp. 77–90. Springer, Heidelberg (2007)
Verel, S., Collard, P., Clergue, M.: Where are bottlenecks in NK fitness landscapes? In: CEC 2003, pp. 273–280 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Jankee, C., Verel, S., Derbel, B., Fonlupt, C. (2016). A Fitness Cloud Model for Adaptive Metaheuristic Selection Methods. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-45823-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45822-9
Online ISBN: 978-3-319-45823-6
eBook Packages: Computer ScienceComputer Science (R0)