Skip to main content

Using Learning Features to Find Similar Trajectories

  • Conference paper
  • First Online:
Web Technologies and Applications (APWeb 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9865))

Included in the following conference series:

  • 1011 Accesses

Abstract

In the last decade, the trajectories data have been collected by many applications and such trajectories contain rich information that can be used to detect events especially for anomaly event detections. However, there are still many challenges on this problem, the major one is how to identify the similar trajectories on semantic level. In this work, we extract the nature features from raw trajectories and use them to do the semantic trajectory similarity search. To achieve this, we propose a PLS algorithm to detect such semantic similar trajectories efficiently and effectively. We also leverage the DBSCAN to help extract the information from large trajectory data. The results of our algorithm are demonstrated by the real world dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, Y., Ng, R.: Indexing spatio-temporal trajectories with Chebyshev polynomials. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, pp. 599–610. ACM (2004)

    Google Scholar 

  2. Wu, D., Yiu, M.L., Jensen, C.S., et al.: Efficient continuously moving top-k spatial keyword query processing. In: 2011 IEEE 27th International Conference on Data Engineering (ICDE), pp. 541–552. IEEE (2011)

    Google Scholar 

  3. Chen, L., Ozsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 491–502. ACM (2005)

    Google Scholar 

  4. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings of the 18th International Conference on Data Engineering, pp. 673–684. IEEE (2002)

    Google Scholar 

  5. Zheng, K., Trajcevski, G., Zhou, X., et al.: Probabilistic range queries for uncertain trajectories on road networks. In: Proceedings of the 14th International Conference on Extending Database Technology, pp. 283–294. ACM (2011)

    Google Scholar 

  6. Zheng, K., Zheng, Y., Xie, X., et al.: Reducing uncertainty of low-sampling-rate trajectories. In: 2012 IEEE 28th International Conference on Data Engineering (ICDE), pp. 1144–1155. IEEE (2012)

    Google Scholar 

  7. Jeung, H., Yiu, M.L., Zhou, X., et al.: Discovery of convoys in trajectory databases. Proc. VLDB Endowment 1(1), 1068–1080 (2008)

    Article  Google Scholar 

  8. Zheng, K., Zheng, Y., Yuan, N.J., et al.: On discovery of gathering patterns from trajectories. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE), pp. 242–253. IEEE (2013)

    Google Scholar 

  9. Wang, H., Zheng, K., Xu, J., et al.: SharkDB: an in-memory column-oriented trajectory storage. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 1409–1418. ACM (2014)

    Google Scholar 

  10. Ni, J., Ravishankar, C.V.: Indexing spatio-temporal trajectories with efficient polynomial approximations. IEEE Trans. Knowl. Data Eng. 19(5), 663–678 (2007)

    Article  Google Scholar 

  11. Chakka, V.P., Everspaugh, A.C., Patel, J.M.: Indexing large trajectory data sets with SETI. Ann Arbor 1001, 48109-2122, 12 (2003)

    Google Scholar 

  12. Cudre-Mauroux, P., Wu, E., Madden, S.: Trajstore: an adaptive storage system for very large trajectory data sets. In: 2010 IEEE 26th International Conference on Data Engineering (ICDE), pp. 109–120. IEEE (2010)

    Google Scholar 

  13. Frentzos, E., Gratsias, K., Pelekis, N., Theodoridis, Y.: Nearest neighbor search on moving object trajectories. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 328–345. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Saltenis, B.S., Jensen, C.S., Leutenegger, S.T., et al.: Indexing the positions of continuously moving objects, pp. 331–342. ACM (2000)

    Google Scholar 

  15. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 593–604. ACM (2007)

    Google Scholar 

  16. Jeung, H., Shen, H.T., Zhou, X.: Convoy queries in spatio-temporal databases. In: IEEE 24th International Conference on Data Engineering, ICDE 2008, pp. 1457–1459. IEEE (2008)

    Google Scholar 

  17. Li, Z., Ding, B., Han, J., et al.: Swarm: mining relaxed temporal moving object clusters. Proc. VLDB Endowment 3(1–2), 723–734 (2010)

    Article  Google Scholar 

  18. Zheng, B., Zheng, K., Sharaf, M.A., et al.: Efficient retrieval of top-k most similar users from travel smart card data. In: 2014 IEEE 15th International Conference on Mobile Data Management (MDM), vol. 1, pp. 259–268. IEEE (2014)

    Google Scholar 

  19. Yan, Z., Spaccapietra, S.: Towards semantic trajectory data analysis: a conceptual and computational approach. In: VLDB Ph.D. Workshop (2009)

    Google Scholar 

  20. Spaccapietra, S., Parent, C., Damiani, M.L., et al.: A conceptual view on trajectories. Data Knowl. Eng. 65(1), 126–146 (2008)

    Article  Google Scholar 

  21. Kruskal, J.B.: An overview of sequence comparison: time warps, string edits, and macromolecules. SIAM Rev. 25(2), 201–237 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kearney, J.K., Hansen, S.: Stream editing for animation. University of Iowa, Dept. of Computer Science, No. TR-90-08 (1990)

    Google Scholar 

  23. Chen, L., Ng, R.: On the marriage of Lp-norms and edit distance. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases, vol. 30, pp. 792–803. VLDB Endowment (2004)

    Google Scholar 

  24. Su, H., Zheng, K., Zeng, K., et al.: Making sense of trajectory data: a partition-and-summarization approach. In: 2015 IEEE 31st International Conference on Data Engineering (ICDE), pp. 963–974. IEEE (2015)

    Google Scholar 

  25. De Vries, G.K.D., Van Someren, M.: Machine learning for vessel trajectories using compression, alignments and domain knowledge. Expert Syst. Appl. 39(18), 13426–13439 (2012)

    Article  Google Scholar 

  26. Chen, C., Zhang, D., Castro, P.S., et al.: iBOAT: isolation-based online anomalous trajectory detection. IEEE Trans. Intell. Trans. Syst. 14(2), 806–818 (2013)

    Article  Google Scholar 

  27. Evans, M.R., Oliver, D., Shekhar, S., et al.: Summarizing trajectories into k-primary corridors: a summary of results. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 454–457. ACM (2012)

    Google Scholar 

  28. Andrae, S., Winter, S.: Summarizing GPS trajectories by salient patterns. na (2005)

    Google Scholar 

  29. Yan, Z., Chakraborty, D., Parent, C., et al.: SeMiTri: a framework for semantic annotation of heterogeneous trajectories. In: Proceedings of the 14th International Conference on Extending Database Technology, pp. 259–270. ACM (2011)

    Google Scholar 

  30. Nergiz, M.E., Atzori, M., Saygin, Y.: Towards trajectory anonymization: a generalization-based approach. In: Proceedings of the SIGSPATIAL ACM GIS 2008 International Workshop on Security and Privacy in GIS and LBS, pp. 52–61. ACM (2008)

    Google Scholar 

  31. Bernstein, D., Kornhauser, A.: An introduction to map matching for personal navigation assistants (1998)

    Google Scholar 

  32. White, C.E., Bernstein, D., Kornhauser, A.L.: Some map matching algorithms for personal navigation assistants. Transp. Res. Part C: Emerg. Technol. 8(1), 91–108 (2000)

    Article  Google Scholar 

  33. Newson, P., Krumm, J.: Hidden Markov map matching through noise and sparseness. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 336–343. ACM (2009)

    Google Scholar 

  34. Lou, Y., Zhang, C., Zheng, Y., et al.: Map-matching for low-sampling-rate GPS trajectories. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 352–361. ACM (2009)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the project which is provided by the National Natural Science Foundation of China under Grant (No. U1435220)(No. 61503365).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiguo Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fu, P., Wang, H., Liu, K., Hu, X., Zhang, H. (2016). Using Learning Features to Find Similar Trajectories. In: Morishima, A., et al. Web Technologies and Applications. APWeb 2016. Lecture Notes in Computer Science(), vol 9865. Springer, Cham. https://doi.org/10.1007/978-3-319-45835-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45835-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45834-2

  • Online ISBN: 978-3-319-45835-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics