Abstract
This article presents a method to detect lines in fisheye and distorted perspective images. The detection is performed with subpixel accuracy. By detecting lines in the original images without warping the image with a reverse distortion, the detection accuracy can be noticeably improved. The combination of the edge detection and the line detection to a single step provides a more robust and more reliable detection of larger line segments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akinlar, C., Topal, C.: EDLines: a real-time line segment detector with a false detection control. Pattern Recogn. Lett. 32(13), 1633–1642 (2011)
Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn. 13(2), 111–122 (1981)
Bay, H., Ferrari, V., Van Gool, L.: Wide-baseline stereo matching with line segments. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 329–336. IEEE (2005)
Bazin, J.C., Demonceaux, C., Vasseur, P.: Fast central catadioptric line extraction. In: MartÃ, J., BenedÃ, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 25–32. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72849-8_4
Boutteau, R., Savatier, X., Bonardi, F., Ertaud, J.Y.: Road-line detection and 3d reconstruction using fisheye cameras. In: 2013 16th International IEEE Conference on Intelligent Transportation Systems-(ITSC), pp. 1083–1088. IEEE (2013)
Bukhari, F., Dailey, M.N.: Automatic radial distortion estimation from a single image. J. Math. Imaging Vis. 45(1), 31–45 (2012)
Burns, J.B., Hanson, A.R., Riseman, E.M.: Extracting straight lines. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(4), 425–455 (1986)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(6), 679–698 (1986)
Ceylan, D., Mitra, N.J., Zheng, Y., Pauly, M.: Coupled structure-from-motion and 3D symmetry detection for urban facades. ACM Trans. Graph. (TOG) 33(1), 2 (2014)
David, P., DeMenthon, D.: Object recognition in high clutter images using line features. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1581–1588 (2005)
Desolneux, A., Moisan, L., Morel, J.M.: From Gestalt Theory to Image Analysis, Interdisciplinary Applied Mathematics, vol. 34. Springer, New York (2008)
Fernandes, L.A.F., Oliveira, M.M.: Real-time line detection through an improved hough transform voting scheme. Pattern Recogn. 41(1), 299–314 (2008)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a line segment detector. Image Process Line 2, 35–55 (2012)
Kannala, J., Brandt, S.S.: A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1335–1340 (2006)
Taylor, C.J., Kriegman, D.J.: Structure and motion from line segments in multiple images. IEEE Trans. Pattern Anal. Mach. Intell. 17(11), 1021–1032 (1995)
Wang, L.L., Tsai, W.H.: Camera calibration by vanishing lines for 3-D computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 370–376 (1991)
Zhang, L., Koch, R.: Structure and motion from line correspondences: representation, projection, initialization and sparse bundle adjustment. J. Vis. Commun. Image Represent. 25(5), 904–915 (2014)
Zhang, L., Xu, C., Lee, K.-M., Koch, R.: Robust and efficient pose estimation from line correspondences. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 217–230. Springer, Heidelberg (2013)
Zhang, M., Yao, J., Xia, M., Li, K., Zhang, Y., Liu, Y.: Line-based multi-label energy optimization for fisheye image rectification and calibration. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4137–4145, June 2015
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Wolters, D., Koch, R. (2016). Precise and Robust Line Detection for Highly Distorted and Noisy Images. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-45886-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45885-4
Online ISBN: 978-3-319-45886-1
eBook Packages: Computer ScienceComputer Science (R0)