Abstract
An algorithm for Contiguous PAtch Segmentation (CPAS) in 3D pointclouds is proposed. In contrast to current state-of-the-art algorithms, CPAS is robust, scalable and provides a more complete description by simultaneously detecting contiguous patches as well as delineating object boundaries. Our algorithm uses a voxel grid to divide the scene into non-overlapping voxels within which clipped planes are fitted with RANSAC. Using a Dirichlet process mixture (DPM) model of Gaussians and connected component analysis, voxels are clustered into contiguous regions. Finally, we use importance sampling on the convex-hull of each region to obtain the underlying patch and object boundary estimates. For urban scenes, the segmentation represents building walls, ground and roof elements (Fig. 1). We demonstrate the robustness of CPAS using data sets from both image matching and raw LiDAR scans.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aldous, D.J.: Exchangeability and related topics. In: Hennequin, P.L. (ed.) École d’Été de Probabilités de Saint-Flour XIII – 1983. Lecture Notes in Mathematics, pp. 1–198. Springer, Heidelberg (1985)
Cabezas, R., Straub, J., Fisher III., J.W.: Semantically-aware aerial reconstruction from multi-modal data. In: ICCV, pp. 2156–2164 (2015)
Chum, O., Matas, J.: Matching with PROSAC - progressive sample consensus. In: CVPR, pp. 220–226 (2005)
Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. PAMI 24(5), 603–619 (2002)
Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. IJCV 96(1), 1–27 (2012)
Demir, I., Aliaga, D.G., Benes, B.: Coupled segmentation and similarity detection for architectural models. SIGGRAPH 34(4), 104:1–104:11 (2015)
Evans, M., Hastings, N., Peacock, B.: von mises distribution. In: Statistical Distributions, pp. 189–191 (2000). Chap. 41
Ferguson, T.S.: A bayesian analysis of some nonparametric problems. Ann. Statist. 1(2), 209–230 (1973)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Fisher, R.: Dispersion on a sphere. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 217(1130), 295–305 (1953)
Frahm, J.-M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H., Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building Rome on a cloudless day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010)
Fransens, J., Van Reeth, F.: Hierarchical PCA decomposition of point clouds. In: Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT 2006), pp. 591–598 (2006)
Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. PAMI 32(8), 1362–1376 (2010)
Golovinskiy, A., Funkhouser, T.: Min-cut based segmentation of point clouds. In: IEEE Workshop on Search in 3D and Video (S3DV) at ICCV, September 2009
Görür, D., Rasmussen, C.E.: Dirichlet process gaussian mixture models: choice of the base distribution. J. Comput. Sci. Technol. 25(4), 653–664 (2010)
Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. PAMI 30(2), 328–341 (2008)
Isack, H., Boykov, Y.: Energy-based geometric multi-model fitting. IJCV 97(2), 123–147 (2011)
Kent, T.J.: The fisher-bingham distribution on the sphere. J. Roy. Stat. Soc.: Ser. B (Methodol.) 44(1), 71–80 (1982)
Kuhn, A., Hirschmüller, H., Mayer, H.: Multi-resolution range data fusion for multi-view stereo reconstruction. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 41–50. Springer, Heidelberg (2013)
Kuhn, A., Mayer, H., Hirschmüller, H., Scharstein, D.: A TV prior for high-quality local multi-view stereo reconstruction. In: Proceedings of the 2014 2nd International Conference on 3D Vision, vol. 01, pp. 65–72 (2014)
Lafarge, F., Alliez, P.: Surface reconstruction through point set structuring. In: Proceedings of Eurographics, Girona, Spain (2013)
Lafarge, F., Keriven, R., Bredif, M., Vu, H.H.: A hybrid multi-view stereo algorithm for modeling urban scenes. PAMI 35(1), 5–17 (2013)
Lafarge, F., Mallet, C.: Creating large-scale city models from 3D-point clouds: a robust approach with hybrid representation. IJCV 99(1), 69–85 (2012)
Lin, H., Gao, J., Zhou, Y., Lu, G., Ye, M., Zhang, C., Liu, L., Yang, R.: Semantic decomposition and reconstruction of residential scenes from lidar data. SIGGRAPH 32(4) (2013)
Lo, A.Y.: On a class of bayesian nonparametric estimates: I. density estimates. Ann. Statist. 12(1), 351–357 (1984)
Mayer, H., Bartelsen, J., Hirschmüller, H., Kuhn, A.: Dense 3D reconstruction from wide baseline image sets. In: Real-World Scene Analysis 2011, pp. 285–304 (2012)
Meixner, P., Leberl, F.: 3-dimensional building details from aerial photography for internet maps. Remote Sens. 3, 721–751 (2011)
Monszpart, A., Mellado, N., Brostow, G., Mitra, N.: RAPter: rebuilding man-made scenes with regular arrangements of planes. SIGGRAPH (2015)
Müller, P., Andrs Quintana, F., Jara, A., Hanson, T.: Bayesian nonparametric data analysis. Springer, Switzerland (2015). Springer Series in Statistics
Neal, R.M.: Markov chain sampling methods for dirichlet process mixture models. Journal of Comput. Graph. Stat. 9(2), 249–265 (2000)
Nguatem, W., Drauschke, M., Mayer, H.: Roof reconstruction from point clouds using importance sampling. Ann. Photogrammetry, Remote Sens. Spat. Inf. Sci. II–3/W3, 73–78 (2013). City Models, Roads and Traffic (CMRT)
Oesau, S., Lafarge, F., Alliez, P.: Planar shape detection and regularization in tandem. Comput. Graph. Forum 35(1), 14 (2015)
Papon, J., Abramov, A., Schoeler, M., Wörgötter, F.: Voxel cloud connectivity segmentation - supervoxels for point clouds. In: CVPR, pp. 2027–2034 (2013)
Pham, T., Chin, T., Yu, J., Suter, D.: The random cluster model for robust geometric fitting. PAMI 36(2), 1658–1671 (2014)
Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.M.: Usac: a universal framework for random sample consensus. PAMI 35(8), 2022–2038 (2013)
Rusu, R.B., Cousins, S.: 3D is here: point cloud library (pcl). In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4. IEEE (2011)
Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for point-cloud shape detection. Comput. Graph. Forum 26(2), 214–226 (2007)
Straub, J., Chang, J., Freifeld, O., Fisher III, J.W.: A dirichlet process mixture model for spherical data. In: AISTATS (2015)
Torr, P.H.S., Zisserman, A.: Mlesac: a new robust estimator with application to estimating image geometry. CVIU 78, 2000 (2000)
Verdie, Y., Lafarge, F., Alliez, P.: LOD generation for urban scenes. SIGGRAPH 34(3), 15 (2015)
Vosselman, G.: Point cloud segmentation for urban scene classification. Int. Arch. Photogrammetry, Remote Sens. Spatial Inf. Sci. XL–7/W2(2), 257–262 (2013)
Wahl, R., Schnabel, R., Klein, R.: From detailed digital surface models to city models using constrainted simplification. Photogrammetrie-Fernerkundung-Geoinformation 2008(3), 207–215 (2008)
Zhang, X., Li, G., Xiong, Y., He, F.: 3D mesh segmentation using mean-shifted curvature. In: Chen, F., Jüttler, B. (eds.) GMP 2008. LNCS, vol. 4975, pp. 465–474. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Nguatem, W., Mayer, H. (2016). Contiguous Patch Segmentation in Pointclouds. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-45886-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45885-4
Online ISBN: 978-3-319-45886-1
eBook Packages: Computer ScienceComputer Science (R0)