Skip to main content

Randomly Sparsified Synthesis for Model-Based Deformation Analysis

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9796))

Included in the following conference series:

Abstract

The tracking of deformation is one of the current challenges in computer vision. Analysis by Synthesis (AbS) based deformation tracking provides a way to fuse color and depth data into a single optimization problem very naturally. Previous work has shown that this can be done very efficiently using sparse synthesis. Although sparse synthesis allows AbS-based tracking to perform in real-time, it requires a great amount of problem specific customization and is limited to certain scenarios. This article introduces a new way of randomized adaptive sparsification of the reference model that adjusts the sparsification during the optimization process according to the required accuracy of the current optimization step. It will be shown that the efficiency of AbS can be increased significantly using the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    One exception can be found in [7], where the derivatives of the reprojection error are calculated for a multi-view stereo setting.

  2. 2.

    RGB-D sequence available at http://cvlab.epfl.ch/data/dsr.

  3. 3.

    Called registration error in [26].

  4. 4.

    Plots are available as supplementary materials.

  5. 5.

    Since there were no definite numbers in [26] available, we roughly estimated a lower bound based on the given Figs. 5 and 6.

References

  1. Auger, A., Brockhoff, D., Hansen, N.: Benchmarking the (1,4)-CMA-ES with mirrored sampling and sequential selection on the noisy BBOB-2010 testbed. In: The 12th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1625–1632, July 2010

    Google Scholar 

  2. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(22), 239–256 (1992)

    Article  Google Scholar 

  3. Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image streams. In: CVPR, vol. 2, pp. 2690–2696 (2000)

    Google Scholar 

  4. Cagniart, C., Boyer, E., Ilic, S.: Iterative mesh deformation for dense surface tracking. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 1465–1472, January 2009

    Google Scholar 

  5. Del Bue, A., Agapito, L.: Non-rigid stereo factorization. Int. J. Comput. Vis. 66(22), 193–207 (2006)

    Google Scholar 

  6. Fayad, J., Agapito, L., Del Bue, A.: Piecewise quadratic reconstruction of non-rigid surfaces from monocular sequences. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 297–310. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Gargallo, P., Prados, E., Sturm, P.: Minimizing the reprojection error in surface reconstruction from images. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)

    Google Scholar 

  8. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation. Studies in Fuzziness and Soft Computing, vol. 192, pp. 75–102. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  10. Helten, T., Baak, A., Bharaj, G., Müller, M., Seidel, H.P., Theobalt, C.: Personalization and evaluation of a real-time depth-based full body tracker. In: 3DV, pp. 279–286 (2013)

    Google Scholar 

  11. Innmann, M., Zollhöfer, M., Nießner, M., Theobalt, C., Stamminger, M.: VolumeDeform: real-time volumetric non-rigid reconstruction, January 2016. CoRR abs/1603.08161v2 [cs.CV]

    Google Scholar 

  12. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R.A., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A.J., et al.: KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In: UIST, pp. 559–568, January 2011

    Google Scholar 

  13. Jordt, A., Koch, R.: Fast tracking of deformable objects in depth and colour video. In: BMVC, pp. 1–11, January 2011

    Google Scholar 

  14. Jordt, A., Koch, R.: Direct model-based tracking of 3D object deformations in depth and color video. Int. J. Comput. Vis. 102(11), 239–255 (2012)

    MathSciNet  Google Scholar 

  15. Jordt, A., Koch, R.: Reconstruction of deformation from depth and color video with explicit noise models. In: Grzegorzek, M., Theobalt, C., Koch, R., Kolb, A. (eds.) Time-of-Flight and Depth Imaging. LNCS, vol. 8200, pp. 128–146. Springer, Heidelberg (2013)

    Google Scholar 

  16. Kambhamettu, C., Goldgof, D., He, M., Laskov, P.: 3D nonrigid motion analysis under small deformations. Image Vis. Comput. 21(33), 229–245 (2003)

    Article  Google Scholar 

  17. Li, H., Adams, B., Guibas, L.J., Pauly, M.: Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28(5), 175:1–175:10 (2009)

    Article  Google Scholar 

  18. Qian, C., Sun, X., Wei, Y., Tang, X., Sun, J.: Realtime and robust hand tracking from depth. In: CVPR, pp. 1106–1113, January 2014

    Google Scholar 

  19. Rosenhahn, B., Kersting, U.G., Powell, K., Klette, R., Klette, G., Seidel, H.P.: A system for articulated tracking incorporating a clothing model. Mach. Vis. Appl. 18(1), 25–40 (2007)

    Article  Google Scholar 

  20. Salzmann, M., Hartley, R.I., Fua, P.: Convex optimization for deformable surface 3-D tracking. In: ICCV, pp. 1–8, January 2007

    Google Scholar 

  21. Sharp, T., Keskin, C., Robertson, D., Taylor, J., Shotton, J.: Accurate, robust, and flexible real-time hand tracking. In: Proceedings of CHI 2015, January 2015

    Google Scholar 

  22. Shotton, J., Fitzgibbon, A.W., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: CVPR, pp. 1297–1304, January 2011

    Google Scholar 

  23. Steimle, J., Jordt, A., Maes, P.: Flexpad: highly flexible bending interactions for projected handheld displays. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 237–246, January 2013

    Google Scholar 

  24. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. Int. J. Comput. Vis. 9(22), 137–154 (1992)

    Article  Google Scholar 

  25. Torresani, L., Hertzmann, A.: Learning non-rigid 3D shape from 2D motion. In: Advances in Neural Information Processing Systems, January 2003

    Google Scholar 

  26. Xu, W., Salzmann, M., Wang, Y., Liu, Y.: Nonrigid surface registration and completion from RGBD images. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 64–79. Springer, Heidelberg (2014)

    Google Scholar 

  27. Zollhöfer, M., Theobalt, C., Stamminger, M., Nießner, M., Izadi, S., Rehmann, C., Zach, C., Fisher, M., Wu, C., Fitzgibbon, A., et al.: Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans. Graph. 33(44), 1–12 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Reinhold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Reinhold, S., Jordt, A., Koch, R. (2016). Randomly Sparsified Synthesis for Model-Based Deformation Analysis. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45886-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45885-4

  • Online ISBN: 978-3-319-45886-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics