Skip to main content

Large-Scale Active Learning with Approximations of Expected Model Output Changes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9796))

Abstract

Incremental learning of visual concepts is one step towards reaching human capabilities beyond closed-world assumptions. Besides recent progress, it remains one of the fundamental challenges in computer vision and machine learning. Along that path, techniques are needed which allow for actively selecting informative examples from a huge pool of unlabeled images to be annotated by application experts. Whereas a manifold of active learning techniques exists, they commonly suffer from one of two drawbacks: (i) either they do not work reliably on challenging real-world data or (ii) they are kernel-based and not scalable with the magnitudes of data current vision applications need to deal with. Therefore, we present an active learning and discovery approach which can deal with huge collections of unlabeled real-world data. Our approach is based on the expected model output change principle and overcomes previous scalability issues. We present experiments on the large-scale MS-COCO dataset and on a dataset provided by biodiversity researchers. Obtained results reveal that our technique clearly improves accuracy after just a few annotations. At the same time, it outperforms previous active learning approaches in academic and real-world scenarios.

This research was supported by grant DE 735/10-1 of the German Research Foundation (DFG).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alajlan, N., Pasolli, E., Melgani, F., Franzoso, A.: Large-scale image classification using active learning. IEEE Geosci. Remote Sens. Lett. 11(1), 259–263 (2014)

    Article  Google Scholar 

  2. Baram, Y., El-Yaniv, R., Luz, K.: Online choice of active learning algorithms. J. Mach. Learn. Res. (JMLR) 5, 255–291 (2004)

    MathSciNet  Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2006)

    MATH  Google Scholar 

  4. Bouneffouf, D.: Exponentiated gradient exploration for active learning. Computers 5(1), 1 (2016)

    Article  Google Scholar 

  5. Cai, W., Zhang, Y., Zhou, S., Wang, W., Ding, C., Gu, X.: Active learning for support vector machines with maximum model change. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014, Part I. LNCS, vol. 8724, pp. 211–226. Springer, Heidelberg (2014)

    Google Scholar 

  6. Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Mach. Learn. 15(2), 201–221 (1994)

    Google Scholar 

  7. Demir, B., Bruzzone, L.: A novel active learning method in relevance feedback for content-based remote sensing image retrieval. IEEE Trans. Geosci. Remote Sens. 53(5), 2323–2334 (2015)

    Article  Google Scholar 

  8. Ertekin, S., Huang, J., Bottou, L., Giles, L.: Learning on the border: active learning in imbalanced data classification. In: ACM Conference on Information and Knowledge Management, pp. 127–136 (2007)

    Google Scholar 

  9. Freytag, A., Rodner, E., Bodesheim, P., Denzler, J.: Labeling examples that matter: relevance-based active learning with Gaussian processes. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 282–291. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Freytag, A., Rodner, E., Denzler, J.: Selecting influential examples: active learning with expected model output changes. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 562–577. Springer, Heidelberg (2014)

    Google Scholar 

  11. Fu, C., Yang, Y.: A batch-mode active learning SVM method based on semi-supervised clustering. Intell. Data Anal. 19(2), 345–358 (2015)

    Google Scholar 

  12. Haines, T.S.F., Xiang, T.: Active rare class discovery and classification using dirichlet processes. Int. J. Comput. Vision (IJCV) 106(3), 315–331 (2014)

    Article  Google Scholar 

  13. Hoi, S.C., Jin, R., Lyu, M.R.: Large-scale text categorization by batch mode active learning. In: ACM International Conference on World Wide Web, pp. 633–642 (2006)

    Google Scholar 

  14. Huang, S.J., Jin, R., Zhou, Z.H.: Active learning by querying informative and representative examples. In: Neural Information Processing Systems (NIPS), pp. 892–900 (2010)

    Google Scholar 

  15. Jain, P., Kapoor, A.: Active learning for large multi-class problems. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 762–769 (2009)

    Google Scholar 

  16. Joshi, A., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2372–2379 (2009)

    Google Scholar 

  17. Käding, C., Freytag, A., Rodner, E., Bodesheim, P., Denzler, J.: Active learning and discovery of object categories in the presence of unnameable instances. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4343–4352 (2015)

    Google Scholar 

  18. Kapoor, A., Grauman, K., Urtasun, R., Darrell, T.: Gaussian processes for object categorization. Int. J. Comput. Vision (IJCV) 88, 169–188 (2010)

    Article  Google Scholar 

  19. Krähenbühl, P., Koltun, V.: Geodesic object proposals. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 725–739. Springer, Heidelberg (2014)

    Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Neural Information Processing Systems (NIPS), pp. 1097–1105 (2012)

    Google Scholar 

  21. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 740–755. Springer, Heidelberg (2014)

    Google Scholar 

  22. Plackett, R.L.: Some theorems in least squares. Biometrika 37(1/2), 149–157 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  23. Press, W.H.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  24. Roy, N., McCallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: International Conference on Machine Learning (ICML), pp. 441–448 (2001)

    Google Scholar 

  25. Seeger, M.: Low rank updates for the cholesky decomposition. Technical report, University of California, Berkeley (2004)

    Google Scholar 

  26. Settles, B.: Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison (2009)

    Google Scholar 

  27. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. (JMLR) 2, 45–66 (2002)

    MATH  Google Scholar 

  28. Vezhnevets, A., Buhmann, J.M., Ferrari, V.: Active learning for semantic segmentation with expected change. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  29. Yang, Y., Ma, Z., Nie, F., Chang, X., Hauptmann, A.G.: Multi-class active learning by uncertainty sampling with diversity maximization. Int. J. Comput. Vision (IJCV) 113(2), 113–127 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Käding .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1622 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Käding, C., Freytag, A., Rodner, E., Perino, A., Denzler, J. (2016). Large-Scale Active Learning with Approximations of Expected Model Output Changes. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45886-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45885-4

  • Online ISBN: 978-3-319-45886-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics