Abstract
Monocular scene reconstruction is essential for modern applications such as robotics or autonomous driving. Although stereo methods usually result in better accuracy than monocular methods, they are more expensive and more difficult to calibrate. In this work, we present a novel second order optimal minimum energy filter that jointly estimates the camera motion, the disparity map and also higher order kinematics recursively on a product Lie group containing a novel disparity group. This mathematical framework enables to cope with non-Euclidean state spaces, non-linear observations and high dimensions which is infeasible for most classical filters. To be robust against outliers, we use a generalized Charbonnier energy function in this framework rather than a quadratic energy function as proposed in related work. Experiments confirm that our method enables accurate reconstructions on-par with state-of-the-art.
J. Berger–Support by the German Research Foundation (DFG, GRK 1653) is acknowledged.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Becker, F., Lenzen, F., Kappes, J.H., Schnörr, C.: Variational recursive joint estimation of dense scene structure and camera motion from monocular high speed traffic sequences. IJCV 105, 269–297 (2013)
Bellavia, F., Fanfani, M., Pazzaglia, F., Colombo, C.: Robust selective stereo SLAM without loop closure and bundle adjustment. In: Petrosino, A. (ed.) ICIAP 2013, Part I. LNCS, vol. 8156, pp. 462–471. Springer, Heidelberg (2013)
Berger, J., Lenzen, F., Becker, F., Neufeld, A., Schnörr, C.: Second-Order Recursive Filtering on the Rigid-Motion Lie Group SE(3) Based on Nonlinear Observations (2015). ArXiv, preprint arXiv:1507.06810
Berger, J., Neufeld, A., Becker, F., Lenzen, F., Schnörr, C.: Second Order Minimum Energy Filtering on \({\text{ SE }}_{3}\) with Nonlinear Measurement Equations. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 397–409. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18461-6_32
Bourmaud, G., Mégret, R.: Robust large scale monocular visual SLAM. In CVPR, pp. 1638–1647 (2015)
Bourmaud, G., Mégret, R., Arnaudon, M., Giremus, A.: Continuous-discrete extended Kalman filter on matrix lie groups using concentrated Gaussian distributions. J. Math. Imaging Vis. 51(1), 209–228 (2015)
Chikuse, Y.: Statistics on Special Manifolds, vol. 174. Springer, Heidelberg (2012)
Daum, F., Huang, J.: Curse of dimensionality and particle filters. In: Aerospace Conference (2003)
Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. PAMI 29(6), 1052–1067 (2007)
Dollár, P.: Piotr’s Computer Vision Matlab Toolbox (PMT). http://vision.ucsd.edu/pdollar/toolbox/doc/index.html
Doucet, A., Freitas, N., Gordon, N.: An introduction to sequential Monte Carlo methods. In: Doucet, A., Freitas, N., Gordon, N. (eds.) Sequential Monte Carlo Methods in Practice, pp. 3–14. Springer, New York (2001)
Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 834–849. Springer, Heidelberg (2014)
Engel, J., Sturm, J., Cremers, D.: Semi-dense visual odometry for a monocular camera. In: ICCV, pp. 1449–1456. IEEE (2013)
Frogerais, P., Bellanger, J., Senhadji, L.: Various ways to compute the continuous-discrete extended Kalman filter. IEEE Trans. Autom. Control 57, 1000–1004 (2012)
Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, vol. 31. Springer, Heidelberg (2006)
Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. PAMI 30(2), 328–341 (2008)
Kwon, J., Choi, M., Park, F.C., Chun, C.: Particle filtering on the Euclidean group: framework and applications. Robotica 25(6), 725–737 (2007)
Mortensen, R.E.: Maximum-likelihood recursive nonlinear filtering. J. Opt. Theory Appl. 2(6), 386–394 (1968)
Neufeld, A., Berger, J., Becker, F., Lenzen, F., Schnörr, C.: Estimating vehicle ego-motion and piecewise planar scene structure from optical flow in a continuous framework. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 41–52. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24947-6_4
Pizzoli, M., Forster, C., Scaramuzza, D.: REMODE: probabilistic, monocular dense reconstruction in real time. In: ICRA, pp. 2609–2616. IEEE (2014)
Pontryagin, L.S., Boltyanskii, V., Gamkrelidze, R., Mishchenko, E.: The Mathematical Theory of Optimal Processes. Interscience Publishers Inc., New York (1962)
Psota, E.T., Kowalczuk, J., Mittek, M., Perez, L.C.: MAP disparity estimation using hidden Markov trees. In: ICCV, pp. 2219–2227 (2015)
Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: EpicFlow: edge-preserving interpolation of correspondences for optical flow. In: CVPR (2015)
Saccon, A., Trumpf, J., Mahony, R., Aguiar, A.P.: Second-order-optimal filters on lie groups. In: CDC (2013)
Saccon, A., Trumpf, J., Mahony, R., Aguiar, A.P.: Second-order-optimal minimum-energy filters on lie groups. IEEE TAC PP(99), 1 (2015)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)
Vogel, C., Schindler, K., Roth, S.: 3D scene flow estimation with a piecewise rigid scene model. IJCV 115(1), 1–28 (2015)
Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: Deepflow: large displacement optical flow with deep matching. In: ICCV, pp. 1385–1392 (2013)
Zamani, M., Trumpf, J., Mahoney, M.: A second order minimum-energy filter on the special orthogonal group. In: Proceedings of ACC (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Berger, J., Schnörr, C. (2016). Joint Recursive Monocular Filtering of Camera Motion and Disparity Map. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-45886-1_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45885-4
Online ISBN: 978-3-319-45886-1
eBook Packages: Computer ScienceComputer Science (R0)