Skip to main content

Joint Recursive Monocular Filtering of Camera Motion and Disparity Map

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9796))

Included in the following conference series:

  • 2099 Accesses

Abstract

Monocular scene reconstruction is essential for modern applications such as robotics or autonomous driving. Although stereo methods usually result in better accuracy than monocular methods, they are more expensive and more difficult to calibrate. In this work, we present a novel second order optimal minimum energy filter that jointly estimates the camera motion, the disparity map and also higher order kinematics recursively on a product Lie group containing a novel disparity group. This mathematical framework enables to cope with non-Euclidean state spaces, non-linear observations and high dimensions which is infeasible for most classical filters. To be robust against outliers, we use a generalized Charbonnier energy function in this framework rather than a quadratic energy function as proposed in related work. Experiments confirm that our method enables accurate reconstructions on-par with state-of-the-art.

J. Berger–Support by the German Research Foundation (DFG, GRK 1653) is acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://hciweb.iwr.uni-heidelberg.de/people/johannesberger.

References

  1. Becker, F., Lenzen, F., Kappes, J.H., Schnörr, C.: Variational recursive joint estimation of dense scene structure and camera motion from monocular high speed traffic sequences. IJCV 105, 269–297 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellavia, F., Fanfani, M., Pazzaglia, F., Colombo, C.: Robust selective stereo SLAM without loop closure and bundle adjustment. In: Petrosino, A. (ed.) ICIAP 2013, Part I. LNCS, vol. 8156, pp. 462–471. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Berger, J., Lenzen, F., Becker, F., Neufeld, A., Schnörr, C.: Second-Order Recursive Filtering on the Rigid-Motion Lie Group SE(3) Based on Nonlinear Observations (2015). ArXiv, preprint arXiv:1507.06810

  4. Berger, J., Neufeld, A., Becker, F., Lenzen, F., Schnörr, C.: Second Order Minimum Energy Filtering on \({\text{ SE }}_{3}\) with Nonlinear Measurement Equations. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 397–409. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18461-6_32

    Google Scholar 

  5. Bourmaud, G., Mégret, R.: Robust large scale monocular visual SLAM. In CVPR, pp. 1638–1647 (2015)

    Google Scholar 

  6. Bourmaud, G., Mégret, R., Arnaudon, M., Giremus, A.: Continuous-discrete extended Kalman filter on matrix lie groups using concentrated Gaussian distributions. J. Math. Imaging Vis. 51(1), 209–228 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chikuse, Y.: Statistics on Special Manifolds, vol. 174. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  8. Daum, F., Huang, J.: Curse of dimensionality and particle filters. In: Aerospace Conference (2003)

    Google Scholar 

  9. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. PAMI 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  10. Dollár, P.: Piotr’s Computer Vision Matlab Toolbox (PMT). http://vision.ucsd.edu/pdollar/toolbox/doc/index.html

  11. Doucet, A., Freitas, N., Gordon, N.: An introduction to sequential Monte Carlo methods. In: Doucet, A., Freitas, N., Gordon, N. (eds.) Sequential Monte Carlo Methods in Practice, pp. 3–14. Springer, New York (2001)

    Chapter  Google Scholar 

  12. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 834–849. Springer, Heidelberg (2014)

    Google Scholar 

  13. Engel, J., Sturm, J., Cremers, D.: Semi-dense visual odometry for a monocular camera. In: ICCV, pp. 1449–1456. IEEE (2013)

    Google Scholar 

  14. Frogerais, P., Bellanger, J., Senhadji, L.: Various ways to compute the continuous-discrete extended Kalman filter. IEEE Trans. Autom. Control 57, 1000–1004 (2012)

    Article  MathSciNet  Google Scholar 

  15. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, vol. 31. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  16. Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. PAMI 30(2), 328–341 (2008)

    Article  Google Scholar 

  17. Kwon, J., Choi, M., Park, F.C., Chun, C.: Particle filtering on the Euclidean group: framework and applications. Robotica 25(6), 725–737 (2007)

    Article  Google Scholar 

  18. Mortensen, R.E.: Maximum-likelihood recursive nonlinear filtering. J. Opt. Theory Appl. 2(6), 386–394 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  19. Neufeld, A., Berger, J., Becker, F., Lenzen, F., Schnörr, C.: Estimating vehicle ego-motion and piecewise planar scene structure from optical flow in a continuous framework. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 41–52. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24947-6_4

    Chapter  Google Scholar 

  20. Pizzoli, M., Forster, C., Scaramuzza, D.: REMODE: probabilistic, monocular dense reconstruction in real time. In: ICRA, pp. 2609–2616. IEEE (2014)

    Google Scholar 

  21. Pontryagin, L.S., Boltyanskii, V., Gamkrelidze, R., Mishchenko, E.: The Mathematical Theory of Optimal Processes. Interscience Publishers Inc., New York (1962)

    Google Scholar 

  22. Psota, E.T., Kowalczuk, J., Mittek, M., Perez, L.C.: MAP disparity estimation using hidden Markov trees. In: ICCV, pp. 2219–2227 (2015)

    Google Scholar 

  23. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: EpicFlow: edge-preserving interpolation of correspondences for optical flow. In: CVPR (2015)

    Google Scholar 

  24. Saccon, A., Trumpf, J., Mahony, R., Aguiar, A.P.: Second-order-optimal filters on lie groups. In: CDC (2013)

    Google Scholar 

  25. Saccon, A., Trumpf, J., Mahony, R., Aguiar, A.P.: Second-order-optimal minimum-energy filters on lie groups. IEEE TAC PP(99), 1 (2015)

    Google Scholar 

  26. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  27. Vogel, C., Schindler, K., Roth, S.: 3D scene flow estimation with a piecewise rigid scene model. IJCV 115(1), 1–28 (2015)

    Article  MathSciNet  Google Scholar 

  28. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: Deepflow: large displacement optical flow with deep matching. In: ICCV, pp. 1385–1392 (2013)

    Google Scholar 

  29. Zamani, M., Trumpf, J., Mahoney, M.: A second order minimum-energy filter on the special orthogonal group. In: Proceedings of ACC (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Berger, J., Schnörr, C. (2016). Joint Recursive Monocular Filtering of Camera Motion and Disparity Map. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45886-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45885-4

  • Online ISBN: 978-3-319-45886-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics