Skip to main content

Reduction of Point Cloud Artifacts Using Shape Priors Estimated with the Gaussian Process Latent Variable Model

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9796))

Included in the following conference series:

Abstract

We present a method that removes point cloud artifacts like noisy points, missing data and outliers from a point cloud using a learned shape prior. The shape prior is learned with the Gaussian Process Latent Variable Model from a set of reference objects. As input data our method uses the estimated object pose from an object detector and a segmented point cloud. We show that the estimated shape prior is capable of modeling fine details to a certain degree. We also show that after applying our method the measured accuracy and completeness is increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transfom. IEEE Trans. Comput. 23(1), 90–93 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bao, S.Y.Z., Chandraker, M., Lin, Y., Savarese, S.: Dense object reconstruction with semantic priors. In: CVPR, pp. 1264–1271. IEEE (2013)

    Google Scholar 

  3. Berger, M., Tagliasacchi, A., Seversky, L.M., Alliez, P., Levine, J.A., Sharf, A., Silva, C.: State of the art in surface reconstruction from point clouds. In: Eurographics STAR (Proceedings of EG 2014) (2014)

    Google Scholar 

  4. Dame, A., Prisacariu, V.A., Ren, C.Y., Reid, I.D.: Dense reconstruction using 3D object shape priors. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, pp. 1288–1295, 23–28 June 2013

    Google Scholar 

  5. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  6. Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Towards internet-scale multi-view stereo. In: CVPR (2010)

    Google Scholar 

  7. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2010)

    Article  Google Scholar 

  8. Gal, R., Shamir, A., Hassner, T., Pauly, M., Or, D.C.: Surface reconstruction using local shape priors. In: Belyaev, A., Garland, M. (eds.) Geometry Processing. The Eurographics Association (2007)

    Google Scholar 

  9. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441 (1933)

    Article  MATH  Google Scholar 

  10. Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 406–413. IEEE (2014)

    Google Scholar 

  11. Jones, M.W., Baerentzen, J.A., Sramek, M.: 3D distance fields: a survey of techniques and applications. IEEE Trans. Vis. Comput. Graph. 12(4), 581–599 (2006)

    Article  Google Scholar 

  12. Kazhdan, M.M., Hoppe, H.: Screened poisson surface reconstruction. ACM Trans. Graph. 32(3), 29 (2013)

    Article  MATH  Google Scholar 

  13. Lawrence, N.D.: Probabilistic non-linear principal component analysis with Gaussian process latent variable models. J. Mach. Learn. Res. 6, 1783–1816 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: SIGGRAPH, pp. 163–169 (1987)

    Google Scholar 

  15. Maurer Jr., C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 265–270 (2003)

    Article  Google Scholar 

  16. Moons, T., Gool, L.J.V., Vergauwen, M.: 3D reconstruction from multiple images: Part 1 - principles. Found. Trends Comput. Graph. Vis. 4(4), 287–404 (2009)

    Article  Google Scholar 

  17. Nan, L., Xie, K., Sharf, A.: A search-classify approach for cluttered indoor scene understanding. ACM Trans. Graph. 31(6), 137:1–137:10 (2012)

    Article  Google Scholar 

  18. Pauly, M., Mitra, N.J., Giesen, J., Gross, M., Guibas, L.J.: Example-based 3D scan completion. In: Proceedings of the Third Eurographics Symposium on Geometry Processing. SGP 2005, Eurographics Association, Aire-la-Ville, Switzerland (2005)

    Google Scholar 

  19. Pearson, K.: On lines and planes of closest fit to systems of points in space. Phil. Mag. 2, 559–572 (1901)

    Article  MATH  Google Scholar 

  20. Prisacariu, V.A., Reid, I.D.: Nonlinear shape manifolds as shape priors in level set segmentation and tracking. In: The 24th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, Colorado Springs, pp. 2185–2192, 20–25 June 2011

    Google Scholar 

  21. Prisacariu, V.A., Segal, A.V., Reid, I.: Simultaneous monocular 2D segmentation, 3D pose recovery and 3D reconstruction. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 593–606. Springer, Heidelberg (2013)

    Google Scholar 

  22. Ren, C.Y., Prisacariu, V., Reid, I.: Regressing local to global shape properties for online segmentation and tracking. Int. J. Comput. Vision 106(3), 269–281 (2013)

    Article  Google Scholar 

  23. Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 1, pp. 519–526. IEEE Computer Society, New York (2006)

    Google Scholar 

  24. Shao, T., Xu, W., Zhou, K., Wang, J., Li, D., Guo, B.: An interactive approach to semantic modeling of indoor scenes with an RGBD camera. ACM Trans. Graph 31(6), 136:1–136:11 (2012)

    Article  Google Scholar 

  25. Shen, C.H., Fu, H., Chen, K., Hu, S.M.: Structure recovery by part assembly. ACM Trans. Graph. 31(6), 180: 1–180: 11 (2012)

    Article  Google Scholar 

  26. Wang, Q., Wang, F., Li, D., Wang, X.: Clustering-based latent variable models for monocular non-rigid 3D shape recovery. In: Huang, D.-S., Jo, K.-H., Wang, L. (eds.) ICIC 2014. LNCS, vol. 8589, pp. 162–172. Springer, Heidelberg (2014)

    Google Scholar 

  27. Wu, C.: VisualSFM: a visual structure from motion system (2016). http://ccwu.me/vsfm/. Accessed 11 Feb 2016

  28. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vision 13(2), 119–152 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jens Krenzin or Olaf Hellwich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Krenzin, J., Hellwich, O. (2016). Reduction of Point Cloud Artifacts Using Shape Priors Estimated with the Gaussian Process Latent Variable Model. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45886-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45885-4

  • Online ISBN: 978-3-319-45886-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics