Abstract
The practical use of the latest methods for supervised 3D shape co-segmentation is limited by the requirement of diverse training data and a watertight mesh representation. Driven by practical considerations, we assume only one reference shape to be available and the query shape to be provided as a partially visible point cloud. We propose a novel co-segmentation approach that constructs a part-based object representation comprised of shape appearance models of individual parts and isometric spatial relations between the parts. The partial query shape is pre-segmented using planar cuts, and the segments accompanied by the learned representation induce a compact Conditional Random Field (CRF). CRF inference is performed efficiently by \(A^*\)-search with global optimality guarantees. A comparative evaluation with two baselines on partial views generated from the Labelled Princeton Segmentation Benchmark and point clouds recorded with an RGB-D sensor demonstrate superiority of the proposed approach both in accuracy and efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Reported as one minus Rand index, by convention.
References
Alhashim, I., Xu, K., Zhuang, Y., Cao, J., Simari, P., Zhang, H.: Deformation-driven topology-varying 3D shape correspondence. TOG 34(6), 236 (2015)
Bergtholdt, M., Kappes, J., Schmidt, S., Schnörr, C.: A study of parts-based object class detection using complete graphs. IJCV 87(1–2), 93–117 (2010)
Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. IJCV 89(2–3), 266–286 (2010)
Bronstein, M.M., Bronstein, A.M.: Shape recognition with spectral distances. PAMI 33(5), 1065–1071 (2010)
Chatfield, K., Lempitsky, V.S., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods. In: BMVC (2011)
Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation. ACM TOG 28, 73 (2009)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. PAMI 32(9), 1627–1645 (2010)
Golovinskiy, A., Funkhouser, T.: Consistent segmentation of 3D models. Comput. Graph. 33(3), 262–269 (2009)
Hu, R., Fan, L., Liu, L.: Co-segmentation of 3D shapes via subspace clustering. CGF 31, 1703–1713 (2012)
Huang, Q., Koltun, V., Guibas, L.: Joint shape segmentation with linear programming. ACM TOG 30, 125 (2011)
Huang, Q., Wang, F., Guibas, L.: Functional map networks for analyzing and exploring large shape collections. TOG 33(4), 36 (2014)
Jaakkola, T., Haussler, D., et al.: Exploiting generative models in discriminative classifiers. In: NIPS, pp. 487–493 (1999)
van Kaick, O., Tagliasacchi, A., Sidi, O., Zhang, H., Cohen-Or, D., Wolf, L., Hamarneh, G.: Prior knowledge for part correspondence. CGF 30, 553–562 (2011)
van Kaick, O., Xu, K., Zhang, H., Wang, Y., Sun, S., Shamir, A., Cohen-Or, D.: Co-hierarchical analysis of shape structures. TOG 32(4), 69 (2013)
Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3D mesh segmentation and labeling. ACM TOG 29, 102 (2010)
Kim, V.G., Li, W., Mitra, N.J., Chaudhuri, S., DiVerdi, S., Funkhouser, T.: Learning part-based templates from large collections of 3D shapes. TOG 32(4), 70 (2013)
Liang, J., Lai, R., Wong, T.W., Zhao, H.: Geometric understanding of point clouds using Laplace-Beltrami operator. In: CVPR, pp. 214–221 (2012)
Liu, Y., Prabhakaran, B., Guo, X.: Point-based manifold harmonics. VCG 18(10), 1693–1703 (2012)
Marton, Z.C., Rusu, R.B., Beetz, M.: On fast surface reconstruction methods for large and noisy datasets. In: ICRA, Kobe, Japan, 12–17 May 2009
Meng, M., Xia, J., Luo, J., He, Y.: Unsupervised co-segmentation for 3D shapes using iterative multi-label optimization. CAD 45(2), 312–320 (2013)
Mitra, N.J., Wand, M., Zhang, H., Cohen-Or, D., Kim, V., Huang, Q.X.: Structure-aware shape processing. In: Eurographics Report. ACM (2014)
Ohbuchi, R., Osada, K., Furuya, T., Banno, T.: Salient local visual features for shape-based 3D model retrieval. In: SMA, pp. 93–102. IEEE (2008)
Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. TOG 31(4), 30 (2012)
Ovsjanikov, M., Bronstein, A.M., Bronstein, M.M., Guibas, L.J.: Shape Google: a computer vision approach to isometry invariant shape retrieval. In: ICCV Workshops, pp. 320–327. IEEE (2009)
Ovsjanikov, M., Li, W., Guibas, L., Mitra, N.J.: Exploration of continuous variability in collections of 3D shapes. TOG 30(4), 33 (2011)
Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)
Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: ICRA, pp. 3212–3217. IEEE (2009)
Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. IJCV 105(3), 222–245 (2013)
Schnitman, Y., Caspi, Y., Cohen-Or, D., Lischinski, D.: Inducing semantic segmentation from an example. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 373–384. Springer, Heidelberg (2006)
Schoeler, M., Papon, J., Wörgötter, F.: Constrained planar cuts-object partitioning for point clouds. In: CVPR, pp. 5207–5215 (2015)
Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., Zhang, H.: Contextual part analogies in 3D objects. IJCV 89(2), 309–326 (2010)
Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. VC 24(4), 249–259 (2008)
Shotton, J., Winn, J., Rother, C., Criminisi, A.: Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. IJCV 81(1), 2–23 (2009)
Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., Cohen-Or, D.: Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM TOG 30, 126 (2011)
Toldo, R., Castellani, U., Fusiello, A.: Visual vocabulary signature for 3D object retrieval and partial matching. In: Proceedings of the 3DOR Conference, pp. 21–28 (2009)
Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010)
Toshev, A., Shi, J., Daniilidis, K.: Image matching via saliency region correspondences. In: CVPR, pp. 1–8 (2007)
Van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. CGF 30, 1681–1707 (2011)
Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: Map estimation via agreement on trees: message-passing and linear programming. IEEE Trans. Inf. Theor. 51(11), 3697–3717 (2005)
Wang, F., Huang, Q., Ovsjanikov, M., Guibas, L.J.: Unsupervised multi-class joint image segmentation. In: CVPR, pp. 3142–3149 (2014)
Wang, Y., Asafi, S., van Kaick, O., Zhang, H., Cohen-Or, D., Chen, B.: Active co-analysis of a set of shapes. TOG 31(6), 165 (2012)
Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., Cheng, Z.Q.: Style-content separation by anisotropic part scales. TOG 29(6), 184 (2010)
Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Trans. Inf. Theor. 51(7), 2282–2312 (2005)
Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., Van Kaick, O., Tagliasacchi, A.: Deformation-driven shape correspondence. CGF 27, 1431–1439 (2008)
Zheng, Y., Cohen-Or, D., Averkiou, M., Mitra, N.J.: Recurring part arrangements in shape collections. CGF 33, 115–124 (2014)
Acknowledgements
This work was supported by German Research Foundation (DFG) under grant BE 2556/12 ALROMA in priority programme SPP 1527 Autonomous Learning.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Araslanov, N., Koo, S., Gall, J., Behnke, S. (2016). Efficient Single-View 3D Co-segmentation Using Shape Similarity and Spatial Part Relations. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-45886-1_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45885-4
Online ISBN: 978-3-319-45886-1
eBook Packages: Computer ScienceComputer Science (R0)